高熵 Cu1Zn1Al0.5Ce5Zr0.5Ox 中氧空位在二氧化碳加氢反应中的作用

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL Applied Catalysis A: General Pub Date : 2024-05-05 DOI:10.1016/j.apcata.2024.119781
Junting Li , Xiaolu Yuan , Fuping Tian , Min Wang , Tao Hu , Guang Xiong , Xiang Wang
{"title":"高熵 Cu1Zn1Al0.5Ce5Zr0.5Ox 中氧空位在二氧化碳加氢反应中的作用","authors":"Junting Li ,&nbsp;Xiaolu Yuan ,&nbsp;Fuping Tian ,&nbsp;Min Wang ,&nbsp;Tao Hu ,&nbsp;Guang Xiong ,&nbsp;Xiang Wang","doi":"10.1016/j.apcata.2024.119781","DOIUrl":null,"url":null,"abstract":"<div><p>High-entropy oxides (HEOs) have garnered significant attention in catalysis due to their excellent redox properties and superior stability. In this study, we prepared and investigated a high-entropy oxide, Cu<sub>1</sub>Zn<sub>1</sub>Al<sub>0.5</sub>Ce<sub>5</sub>Zr<sub>0.5</sub>O<sub>x</sub>, to elucidate the impact of oxygen vacancy density on the CO<sub>2</sub> hydrogenation reaction. Comparisons were made with binary or ternary solid solutions composed of the same cations present in this HEO, and possessing the same phase structure. The HEO exhibits a higher surface oxygen vacancy density as evidenced by Raman spectroscopy and XPS. The increased number of oxygen vacancies significantly increases the active sites and enhances the strength for CO<sub>2</sub> adsorption. Combined with kinetic analysis, it is suggested that the enhanced CO<sub>2</sub> adsorption leads to improved CO<sub>2</sub> conversion on the HEO. Moreover, the formation of oxygen vacancies facilitates H<sub>2</sub> dissociation and supply, which is pivotal for methanol formation on the HEO. The stability of the HEO Cu<sub>1</sub>Zn<sub>1</sub>Al<sub>0.5</sub>Ce<sub>5</sub>Zr<sub>0.5</sub>O<sub>x</sub> surpasses that of the medium entropy oxide, showing no significant deactivation after 100 hours of reaction.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of oxygen vacancy in high-entropy Cu1Zn1Al0.5Ce5Zr0.5Ox for CO2 hydrogenation reaction\",\"authors\":\"Junting Li ,&nbsp;Xiaolu Yuan ,&nbsp;Fuping Tian ,&nbsp;Min Wang ,&nbsp;Tao Hu ,&nbsp;Guang Xiong ,&nbsp;Xiang Wang\",\"doi\":\"10.1016/j.apcata.2024.119781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-entropy oxides (HEOs) have garnered significant attention in catalysis due to their excellent redox properties and superior stability. In this study, we prepared and investigated a high-entropy oxide, Cu<sub>1</sub>Zn<sub>1</sub>Al<sub>0.5</sub>Ce<sub>5</sub>Zr<sub>0.5</sub>O<sub>x</sub>, to elucidate the impact of oxygen vacancy density on the CO<sub>2</sub> hydrogenation reaction. Comparisons were made with binary or ternary solid solutions composed of the same cations present in this HEO, and possessing the same phase structure. The HEO exhibits a higher surface oxygen vacancy density as evidenced by Raman spectroscopy and XPS. The increased number of oxygen vacancies significantly increases the active sites and enhances the strength for CO<sub>2</sub> adsorption. Combined with kinetic analysis, it is suggested that the enhanced CO<sub>2</sub> adsorption leads to improved CO<sub>2</sub> conversion on the HEO. Moreover, the formation of oxygen vacancies facilitates H<sub>2</sub> dissociation and supply, which is pivotal for methanol formation on the HEO. The stability of the HEO Cu<sub>1</sub>Zn<sub>1</sub>Al<sub>0.5</sub>Ce<sub>5</sub>Zr<sub>0.5</sub>O<sub>x</sub> surpasses that of the medium entropy oxide, showing no significant deactivation after 100 hours of reaction.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24002254\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24002254","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵氧化物(HEOs)因其优异的氧化还原特性和超强的稳定性在催化领域备受关注。在本研究中,我们制备并研究了一种高熵氧化物 Cu1Zn1Al0.5Ce5Zr0.5Ox,以阐明氧空位密度对 CO2 加氢反应的影响。我们将该 HEO 与由相同阳离子组成、具有相同相结构的二元或三元固溶体进行了比较。拉曼光谱和 XPS 显示,这种 HEO 的表面氧空位密度更高。氧空位数量的增加大大增加了活性位点,增强了对二氧化碳的吸附强度。结合动力学分析表明,二氧化碳吸附的增强提高了 HEO 对二氧化碳的转化率。此外,氧空位的形成促进了 H2 的解离和供应,这对 HEO 上甲醇的形成至关重要。Cu1Zn1Al0.5Ce5Zr0.5Ox HEO 的稳定性超过了中等熵氧化物,在反应 100 小时后没有出现明显的失活现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of oxygen vacancy in high-entropy Cu1Zn1Al0.5Ce5Zr0.5Ox for CO2 hydrogenation reaction

High-entropy oxides (HEOs) have garnered significant attention in catalysis due to their excellent redox properties and superior stability. In this study, we prepared and investigated a high-entropy oxide, Cu1Zn1Al0.5Ce5Zr0.5Ox, to elucidate the impact of oxygen vacancy density on the CO2 hydrogenation reaction. Comparisons were made with binary or ternary solid solutions composed of the same cations present in this HEO, and possessing the same phase structure. The HEO exhibits a higher surface oxygen vacancy density as evidenced by Raman spectroscopy and XPS. The increased number of oxygen vacancies significantly increases the active sites and enhances the strength for CO2 adsorption. Combined with kinetic analysis, it is suggested that the enhanced CO2 adsorption leads to improved CO2 conversion on the HEO. Moreover, the formation of oxygen vacancies facilitates H2 dissociation and supply, which is pivotal for methanol formation on the HEO. The stability of the HEO Cu1Zn1Al0.5Ce5Zr0.5Ox surpasses that of the medium entropy oxide, showing no significant deactivation after 100 hours of reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
期刊最新文献
The role of the ZnO promoter in the structural evolution of Cu2O in the Rochow-Müller reaction for dimethyldichlorosilane synthesis A novel Ti³⁺-mediated approach for supporting palladium on anodic TiO2 nanotubes: Toward efficient and recyclable catalysis in the heck reaction On-site hydrogen-rich gas production from diesel: A comprehensive study on catalyst development with nickel and diverse metal oxides (MgO, La2O3, CeO2, SiO2) supported on alumina Contents continued Graphical abstract TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1