{"title":"基于感知散列的隐蔽定时信道通用检测框架","authors":"Xiaolong Zhuang, Yonghong Chen, Hui Tian","doi":"10.1002/ett.4978","DOIUrl":null,"url":null,"abstract":"<p>Network covert channels use network resources to transmit data covertly, and their existence will seriously threaten network security. Therefore, an effective method is needed to prevent and detect them. Current network covert timing channel detection methods often incorporate machine learning methods in order to achieve generalized detection, but they consume a large amount of computational resources. In this paper, we propose a generalized detection framework for covert channels based on perceptual hashing without relying on machine learning methods. And we propose a one-dimensional data feature descriptor for feature extraction of perceptual hash for the data characteristics of covert timing channels. We first generate the hash sequence of the corresponding channel to get the average hash, which is used for comparison in the test phase. The experimental results show that the feature descriptor can capture the feature differences of one-dimensional data well. When compared to machine learning methods, this perceptual hashing algorithms enable faster traffic detection. Meanwhile, our method is able to detect the effectiveness with the smallest coverage window compared with the latest solutions. Moreover, it exhibits robustness in jitter network environment.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized detection framework for covert timing channels based on perceptual hashing\",\"authors\":\"Xiaolong Zhuang, Yonghong Chen, Hui Tian\",\"doi\":\"10.1002/ett.4978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network covert channels use network resources to transmit data covertly, and their existence will seriously threaten network security. Therefore, an effective method is needed to prevent and detect them. Current network covert timing channel detection methods often incorporate machine learning methods in order to achieve generalized detection, but they consume a large amount of computational resources. In this paper, we propose a generalized detection framework for covert channels based on perceptual hashing without relying on machine learning methods. And we propose a one-dimensional data feature descriptor for feature extraction of perceptual hash for the data characteristics of covert timing channels. We first generate the hash sequence of the corresponding channel to get the average hash, which is used for comparison in the test phase. The experimental results show that the feature descriptor can capture the feature differences of one-dimensional data well. When compared to machine learning methods, this perceptual hashing algorithms enable faster traffic detection. Meanwhile, our method is able to detect the effectiveness with the smallest coverage window compared with the latest solutions. Moreover, it exhibits robustness in jitter network environment.</p>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.4978\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.4978","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A generalized detection framework for covert timing channels based on perceptual hashing
Network covert channels use network resources to transmit data covertly, and their existence will seriously threaten network security. Therefore, an effective method is needed to prevent and detect them. Current network covert timing channel detection methods often incorporate machine learning methods in order to achieve generalized detection, but they consume a large amount of computational resources. In this paper, we propose a generalized detection framework for covert channels based on perceptual hashing without relying on machine learning methods. And we propose a one-dimensional data feature descriptor for feature extraction of perceptual hash for the data characteristics of covert timing channels. We first generate the hash sequence of the corresponding channel to get the average hash, which is used for comparison in the test phase. The experimental results show that the feature descriptor can capture the feature differences of one-dimensional data well. When compared to machine learning methods, this perceptual hashing algorithms enable faster traffic detection. Meanwhile, our method is able to detect the effectiveness with the smallest coverage window compared with the latest solutions. Moreover, it exhibits robustness in jitter network environment.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications