智能生成图形游戏资产的评估指标:基于系统调查的框架。

Kaisei Fukaya, Damon Daylamani-Zad, Harry Agius
{"title":"智能生成图形游戏资产的评估指标:基于系统调查的框架。","authors":"Kaisei Fukaya, Damon Daylamani-Zad, Harry Agius","doi":"10.1109/TPAMI.2024.3398998","DOIUrl":null,"url":null,"abstract":"<p><p>Generative systems for graphical assets have the potential to provide users with high quality assets at the push of a button. However, there are many forms of assets, and many approaches for producing them. Quantitative evaluation of these methods is necessary if practitioners wish to validate or compare their implementations. Furthermore, providing benchmarks for new methods to strive for or surpass. While most methods are validated using tried-and-tested metrics within their own domains, there is no unified method of finding the most appropriate. We present a framework based on a literature pool of close to 200 papers, that provides guidance in selecting metrics to evaluate the validity and quality of artefacts produced, and the operational capabilities of the method.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation Metrics for Intelligent Generation of Graphical Game Assets: A Systematic Survey-Based Framework.\",\"authors\":\"Kaisei Fukaya, Damon Daylamani-Zad, Harry Agius\",\"doi\":\"10.1109/TPAMI.2024.3398998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative systems for graphical assets have the potential to provide users with high quality assets at the push of a button. However, there are many forms of assets, and many approaches for producing them. Quantitative evaluation of these methods is necessary if practitioners wish to validate or compare their implementations. Furthermore, providing benchmarks for new methods to strive for or surpass. While most methods are validated using tried-and-tested metrics within their own domains, there is no unified method of finding the most appropriate. We present a framework based on a literature pool of close to 200 papers, that provides guidance in selecting metrics to evaluate the validity and quality of artefacts produced, and the operational capabilities of the method.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3398998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3398998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图形资产生成系统有可能为用户提供一键式的高质量资产。然而,资产的形式多种多样,生成资产的方法也多种多样。如果从业人员希望验证或比较他们的实施情况,就有必要对这些方法进行量化评估。此外,还可以为新方法提供努力或超越的基准。虽然大多数方法都在各自的领域内使用久经考验的指标进行验证,但并没有找到最合适的统一方法。我们在近 200 篇文献库的基础上提出了一个框架,为选择指标提供指导,以评估所产生的人工制品的有效性和质量,以及方法的操作能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation Metrics for Intelligent Generation of Graphical Game Assets: A Systematic Survey-Based Framework.

Generative systems for graphical assets have the potential to provide users with high quality assets at the push of a button. However, there are many forms of assets, and many approaches for producing them. Quantitative evaluation of these methods is necessary if practitioners wish to validate or compare their implementations. Furthermore, providing benchmarks for new methods to strive for or surpass. While most methods are validated using tried-and-tested metrics within their own domains, there is no unified method of finding the most appropriate. We present a framework based on a literature pool of close to 200 papers, that provides guidance in selecting metrics to evaluate the validity and quality of artefacts produced, and the operational capabilities of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EBMGC-GNF: Efficient Balanced Multi-View Graph Clustering via Good Neighbor Fusion. Integrating Neural-Symbolic Reasoning With Variational Causal Inference Network for Explanatory Visual Question Answering. Motion-Aware Dynamic Graph Neural Network for Video Compressive Sensing. Evaluation Metrics for Intelligent Generation of Graphical Game Assets: A Systematic Survey-Based Framework. Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1