Jessica Sultana, Audrey M G Ragagnin, Sonam Parakh, Sayanthooran Saravanabavan, Kai Ying Soo, Marta Vidal, Cyril Jones Jagaraj, Kunjie Ding, Sharlynn Wu, Sina Shadfar, Emily K Don, Anand Deva, Garth Nicholson, Dominic B Rowe, Ian Blair, Shu Yang, Julie D Atkin
{"title":"在 ALS/FTD 中,C9orf72 相关的二肽重复扩增干扰了 ER-高尔基体小泡的交通,导致高尔基体破碎和 ER 压力。","authors":"Jessica Sultana, Audrey M G Ragagnin, Sonam Parakh, Sayanthooran Saravanabavan, Kai Ying Soo, Marta Vidal, Cyril Jones Jagaraj, Kunjie Ding, Sharlynn Wu, Sina Shadfar, Emily K Don, Anand Deva, Garth Nicholson, Dominic B Rowe, Ian Blair, Shu Yang, Julie D Atkin","doi":"10.1007/s12035-024-04187-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10318-10338"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C9orf72-Associated Dipeptide Repeat Expansions Perturb ER-Golgi Vesicular Trafficking, Inducing Golgi Fragmentation and ER Stress, in ALS/FTD.\",\"authors\":\"Jessica Sultana, Audrey M G Ragagnin, Sonam Parakh, Sayanthooran Saravanabavan, Kai Ying Soo, Marta Vidal, Cyril Jones Jagaraj, Kunjie Ding, Sharlynn Wu, Sina Shadfar, Emily K Don, Anand Deva, Garth Nicholson, Dominic B Rowe, Ian Blair, Shu Yang, Julie D Atkin\",\"doi\":\"10.1007/s12035-024-04187-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10318-10338\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04187-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04187-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
第 9 号染色体开放阅读框 72(C9orf72)基因中的六核苷酸重复扩增(HRE)是肌萎缩侧索硬化症(ALS)和额颞叶痴呆症(FTD)最常见的遗传病因。这两种疾病都是使人衰弱的神经退行性疾病,影响大脑和脊髓的运动神经元(ALS)或额叶和/或颞叶皮质的神经元(FTD)。HREs 在有义和无义链上进行重复相关非ATG(RAN)翻译,生成五种不同的二肽重复蛋白(DPRs):多肽-GA、多肽-GR、多肽-GP、多肽-PA 和多肽-PR。蛋白稳态紊乱在渐冻症发病机制中已得到广泛认可,包括影响内质网(ER)和高尔基体的过程。然而,这些机制在 C9orf72 介导的 ALS/FTD 中尚未得到很好的表征。在本研究中,我们证明了 C9orf72 DPRs polyGA、polyGR 和 polyGP(×40 重复序列)会破坏神经细胞中分泌蛋白从 ER 到高尔基体的转运。与这一发现相一致的是,这些 DPRs 还能诱导高尔基体的破碎、激活 ER 应激并抑制源自 ER 膜的自噬体的前体--奥米加体的形成。我们还证明了表达 polyGP 的 RAN 翻译细胞中的高尔基体破碎。此外,在 C9orf72 患者的真皮成纤维细胞中,ER-高尔基体转运失调也得到了证实。与对照组相比,在 C9orf72 ALS 患者的脊髓运动神经元中也发现了 ER 派生囊泡异常的证据。因此,这些数据证实,在没有蛋白质过度表达的情况下,C9orf72-ALS 患者的ER 蛋白稳态和ER-高尔基体转运受到了干扰。因此,本研究发现了与 C9orf72 HRE 诱导的 ER 和高尔基体区相关的新分子机制。
C9orf72-Associated Dipeptide Repeat Expansions Perturb ER-Golgi Vesicular Trafficking, Inducing Golgi Fragmentation and ER Stress, in ALS/FTD.
Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.