{"title":"造血在骨修复中的作用:最新进展。","authors":"Elise C Jeffery","doi":"10.1097/MOH.0000000000000821","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The repair of bone after injury requires the participation of many different immune cell populations, which are derived from the hematopoietic lineage. The field of osteoimmunology, or the study of the interactions between bone and the immune system, is a growing field with emerging impact on both the basic science and clinical aspects of fracture healing.</p><p><strong>Recent findings: </strong>Despite previous focus on the innate immune system in fracture healing, recent studies have revealed an important role for the adaptive immune system in bone repair. The composition of adaptive and innate immune cell populations present at the fracture site is significantly altered during aging and diet-induced obesity, which may contribute to delayed healing. Recent data also suggest a complicated relationship between fracture repair and systemic inflammation, raising the possibility that immune populations from distant sites such as the gut can impact the bone repair process.</p><p><strong>Summary: </strong>These findings have important implications for the treatment of fracture patients with antibiotics or anti-inflammatory drugs. Furthermore, the effects of systemic inflammation on fracture repair in the contexts of aging or obesity should be carefully interpreted, as they may not be uniformly detrimental.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of hematopoiesis in bone repair: an update.\",\"authors\":\"Elise C Jeffery\",\"doi\":\"10.1097/MOH.0000000000000821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The repair of bone after injury requires the participation of many different immune cell populations, which are derived from the hematopoietic lineage. The field of osteoimmunology, or the study of the interactions between bone and the immune system, is a growing field with emerging impact on both the basic science and clinical aspects of fracture healing.</p><p><strong>Recent findings: </strong>Despite previous focus on the innate immune system in fracture healing, recent studies have revealed an important role for the adaptive immune system in bone repair. The composition of adaptive and innate immune cell populations present at the fracture site is significantly altered during aging and diet-induced obesity, which may contribute to delayed healing. Recent data also suggest a complicated relationship between fracture repair and systemic inflammation, raising the possibility that immune populations from distant sites such as the gut can impact the bone repair process.</p><p><strong>Summary: </strong>These findings have important implications for the treatment of fracture patients with antibiotics or anti-inflammatory drugs. Furthermore, the effects of systemic inflammation on fracture repair in the contexts of aging or obesity should be carefully interpreted, as they may not be uniformly detrimental.</p>\",\"PeriodicalId\":55196,\"journal\":{\"name\":\"Current Opinion in Hematology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOH.0000000000000821\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000821","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
The role of hematopoiesis in bone repair: an update.
Purpose of review: The repair of bone after injury requires the participation of many different immune cell populations, which are derived from the hematopoietic lineage. The field of osteoimmunology, or the study of the interactions between bone and the immune system, is a growing field with emerging impact on both the basic science and clinical aspects of fracture healing.
Recent findings: Despite previous focus on the innate immune system in fracture healing, recent studies have revealed an important role for the adaptive immune system in bone repair. The composition of adaptive and innate immune cell populations present at the fracture site is significantly altered during aging and diet-induced obesity, which may contribute to delayed healing. Recent data also suggest a complicated relationship between fracture repair and systemic inflammation, raising the possibility that immune populations from distant sites such as the gut can impact the bone repair process.
Summary: These findings have important implications for the treatment of fracture patients with antibiotics or anti-inflammatory drugs. Furthermore, the effects of systemic inflammation on fracture repair in the contexts of aging or obesity should be carefully interpreted, as they may not be uniformly detrimental.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.