通过摩擦学建模和材料替代了解筋膜组织的摩擦行为

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-05-05 DOI:10.1016/j.jmbbm.2024.106566
A. Streďanská , D. Nečas , M. Vrbka , J. Suchánek , J. Matonohová , E. Toropitsyn , M. Hartl , I. Křupka , K. Nešporová
{"title":"通过摩擦学建模和材料替代了解筋膜组织的摩擦行为","authors":"A. Streďanská ,&nbsp;D. Nečas ,&nbsp;M. Vrbka ,&nbsp;J. Suchánek ,&nbsp;J. Matonohová ,&nbsp;E. Toropitsyn ,&nbsp;M. Hartl ,&nbsp;I. Křupka ,&nbsp;K. Nešporová","doi":"10.1016/j.jmbbm.2024.106566","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to develop a reliable tribological model to enable a more thorough investigation of the frictional behavior of fascia tissues connected to non-specific lower back pain. Several models were designed and evaluated based on their coefficient of friction, using a low-frequency, low-load reciprocating motion. The study found that two technical elastomers, layered on PDMS to simulate the fascia and underlying muscle, are suitable substitutes for biological tissue in the model. The influence of tribopair geometry was also examined, and the results showed that greater conformity of contact leads to a lower COF, regardless of the material combination used. Finally, the friction properties of HA of various molecular weights and concentrations were tested.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding frictional behavior in fascia tissues through tribological modeling and material substitution\",\"authors\":\"A. Streďanská ,&nbsp;D. Nečas ,&nbsp;M. Vrbka ,&nbsp;J. Suchánek ,&nbsp;J. Matonohová ,&nbsp;E. Toropitsyn ,&nbsp;M. Hartl ,&nbsp;I. Křupka ,&nbsp;K. Nešporová\",\"doi\":\"10.1016/j.jmbbm.2024.106566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study is to develop a reliable tribological model to enable a more thorough investigation of the frictional behavior of fascia tissues connected to non-specific lower back pain. Several models were designed and evaluated based on their coefficient of friction, using a low-frequency, low-load reciprocating motion. The study found that two technical elastomers, layered on PDMS to simulate the fascia and underlying muscle, are suitable substitutes for biological tissue in the model. The influence of tribopair geometry was also examined, and the results showed that greater conformity of contact leads to a lower COF, regardless of the material combination used. Finally, the friction properties of HA of various molecular weights and concentrations were tested.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175161612400198X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612400198X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发一种可靠的摩擦学模型,以便更深入地研究与非特异性下背痛有关的筋膜组织的摩擦行为。通过低频、低负荷往复运动,根据摩擦系数设计并评估了几种模型。研究发现,在 PDMS 上分层模拟筋膜和下层肌肉的两种技术弹性体适合替代模型中的生物组织。研究还考察了摩擦对几何形状的影响,结果表明,无论使用哪种材料组合,接触的一致性越高,COF 越低。最后,还测试了不同分子量和浓度的 HA 的摩擦特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding frictional behavior in fascia tissues through tribological modeling and material substitution

The objective of this study is to develop a reliable tribological model to enable a more thorough investigation of the frictional behavior of fascia tissues connected to non-specific lower back pain. Several models were designed and evaluated based on their coefficient of friction, using a low-frequency, low-load reciprocating motion. The study found that two technical elastomers, layered on PDMS to simulate the fascia and underlying muscle, are suitable substitutes for biological tissue in the model. The influence of tribopair geometry was also examined, and the results showed that greater conformity of contact leads to a lower COF, regardless of the material combination used. Finally, the friction properties of HA of various molecular weights and concentrations were tested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Effectiveness of energy absorbing floors in reducing hip fractures risk among elderly women during sideways falls Biomechanical, biochemical, and histological characterization of sacroiliac joint cartilage in the Yucatan minipig Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery Bioinspired film-terminated ridges for enhancing friction force on lubricated soft surfaces Unveiling the fatigue life of NiTi endodontic files: An integrated computational–experimental study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1