{"title":"U-ATSS:轻量级、精确的单级水下物体探测网络","authors":"Junjun Wu, Jinpeng Chen, Qinghua Lu, Jiaxi Li, Ningwei Qin, Kaixuan Chen, Xilin Liu","doi":"10.1016/j.image.2024.117137","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the harsh and unknown marine environment and the limited diving ability of human beings, underwater robots become an important role in ocean exploration and development. However, the performance of underwater robots is limited by blurred images, low contrast and color deviation, which are resulted from complex underwater imaging environments. The existing mainstream object detection networks perform poorly when applied directly to underwater tasks. Although using a cascaded detector network can get high accuracy, the inference speed is too slow to apply to actual tasks. To address the above problems, this paper proposes a lightweight and accurate one-stage underwater object detection network, called U-ATSS. Firstly, we compressed the backbone of ATSS to significantly reduce the number of network parameters and improve the inference speed without losing the detection accuracy, to achieve lightweight and real-time performance of the underwater object detection network. Then, we propose a plug-and-play receptive field module F-ASPP, which can obtain larger receptive fields and richer spatial information, and optimize the learning rate strategy as well as classification loss function to significantly improve the detection accuracy and convergence speed. We evaluated and compared U-ATSS with other methods on the Kesci Underwater Object Detection Algorithm Competition dataset containing a variety of marine organisms. The experimental results show that U-ATSS not only has obvious lightweight characteristics, but also shows excellent performance and competitiveness in terms of detection accuracy.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"126 ","pages":"Article 117137"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-ATSS: A lightweight and accurate one-stage underwater object detection network\",\"authors\":\"Junjun Wu, Jinpeng Chen, Qinghua Lu, Jiaxi Li, Ningwei Qin, Kaixuan Chen, Xilin Liu\",\"doi\":\"10.1016/j.image.2024.117137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the harsh and unknown marine environment and the limited diving ability of human beings, underwater robots become an important role in ocean exploration and development. However, the performance of underwater robots is limited by blurred images, low contrast and color deviation, which are resulted from complex underwater imaging environments. The existing mainstream object detection networks perform poorly when applied directly to underwater tasks. Although using a cascaded detector network can get high accuracy, the inference speed is too slow to apply to actual tasks. To address the above problems, this paper proposes a lightweight and accurate one-stage underwater object detection network, called U-ATSS. Firstly, we compressed the backbone of ATSS to significantly reduce the number of network parameters and improve the inference speed without losing the detection accuracy, to achieve lightweight and real-time performance of the underwater object detection network. Then, we propose a plug-and-play receptive field module F-ASPP, which can obtain larger receptive fields and richer spatial information, and optimize the learning rate strategy as well as classification loss function to significantly improve the detection accuracy and convergence speed. We evaluated and compared U-ATSS with other methods on the Kesci Underwater Object Detection Algorithm Competition dataset containing a variety of marine organisms. The experimental results show that U-ATSS not only has obvious lightweight characteristics, but also shows excellent performance and competitiveness in terms of detection accuracy.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"126 \",\"pages\":\"Article 117137\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000389\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000389","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
U-ATSS: A lightweight and accurate one-stage underwater object detection network
Due to the harsh and unknown marine environment and the limited diving ability of human beings, underwater robots become an important role in ocean exploration and development. However, the performance of underwater robots is limited by blurred images, low contrast and color deviation, which are resulted from complex underwater imaging environments. The existing mainstream object detection networks perform poorly when applied directly to underwater tasks. Although using a cascaded detector network can get high accuracy, the inference speed is too slow to apply to actual tasks. To address the above problems, this paper proposes a lightweight and accurate one-stage underwater object detection network, called U-ATSS. Firstly, we compressed the backbone of ATSS to significantly reduce the number of network parameters and improve the inference speed without losing the detection accuracy, to achieve lightweight and real-time performance of the underwater object detection network. Then, we propose a plug-and-play receptive field module F-ASPP, which can obtain larger receptive fields and richer spatial information, and optimize the learning rate strategy as well as classification loss function to significantly improve the detection accuracy and convergence speed. We evaluated and compared U-ATSS with other methods on the Kesci Underwater Object Detection Algorithm Competition dataset containing a variety of marine organisms. The experimental results show that U-ATSS not only has obvious lightweight characteristics, but also shows excellent performance and competitiveness in terms of detection accuracy.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.