用于下一代通信和成像应用的三维打印太赫兹金属透镜

IF 23.2 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Proceedings of the IEEE Pub Date : 2024-03-10 DOI:10.1109/JPROC.2024.3395891
Geng-Bo Wu;Jin Chen;Chenfeng Yang;Ka Fai Chan;Mu Ku Chen;Din Ping Tsai;Chi Hou Chan
{"title":"用于下一代通信和成像应用的三维打印太赫兹金属透镜","authors":"Geng-Bo Wu;Jin Chen;Chenfeng Yang;Ka Fai Chan;Mu Ku Chen;Din Ping Tsai;Chi Hou Chan","doi":"10.1109/JPROC.2024.3395891","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3-D) printing, also known as additive manufacturing, provides a novel and cost-effective approach for implementing microwave devices. With the rapid advancement and improved manufacturing resolution of the 3-D printing technology, additive manufacturing has enabled the design and fabrication of electronic devices in higher terahertz (THz) frequency bands, contributing to bridging the gap between microwaves and photonics. Simultaneously, metalenses have garnered significant attention due to their ability to shape electromagnetic (EM) wavefronts. Metalens technology offers a promising solution for wave focusing, surpassing traditional dielectric lenses with advantages such as reduced weight and low loss, particularly at THz frequencies. In this article, we present an overview of the development of 3-D-printed THz metalenses, ranging from single metalenses to dual-layer and trilayer configurations. The functionality of the metalenses becomes more powerful, from replacing conventional light-focusing dielectric lenses for single-layer metalenses, achieving 2-D beam scanning, holographic imaging, and reconfigurable orbital angular momentum (OAM) for dual-layer metalenses, to enabling 3-D focus scanning for trilayer metalenses. We also discuss practical measurement technologies for THz metalenses and briefly outline the prospective to propel the 3-D-printed metalens technology forward.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 8","pages":"1033-1050"},"PeriodicalIF":23.2000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D-Printed Terahertz Metalenses for Next-Generation Communication and Imaging Applications\",\"authors\":\"Geng-Bo Wu;Jin Chen;Chenfeng Yang;Ka Fai Chan;Mu Ku Chen;Din Ping Tsai;Chi Hou Chan\",\"doi\":\"10.1109/JPROC.2024.3395891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3-D) printing, also known as additive manufacturing, provides a novel and cost-effective approach for implementing microwave devices. With the rapid advancement and improved manufacturing resolution of the 3-D printing technology, additive manufacturing has enabled the design and fabrication of electronic devices in higher terahertz (THz) frequency bands, contributing to bridging the gap between microwaves and photonics. Simultaneously, metalenses have garnered significant attention due to their ability to shape electromagnetic (EM) wavefronts. Metalens technology offers a promising solution for wave focusing, surpassing traditional dielectric lenses with advantages such as reduced weight and low loss, particularly at THz frequencies. In this article, we present an overview of the development of 3-D-printed THz metalenses, ranging from single metalenses to dual-layer and trilayer configurations. The functionality of the metalenses becomes more powerful, from replacing conventional light-focusing dielectric lenses for single-layer metalenses, achieving 2-D beam scanning, holographic imaging, and reconfigurable orbital angular momentum (OAM) for dual-layer metalenses, to enabling 3-D focus scanning for trilayer metalenses. We also discuss practical measurement technologies for THz metalenses and briefly outline the prospective to propel the 3-D-printed metalens technology forward.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 8\",\"pages\":\"1033-1050\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10528379/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10528379/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

三维(3-D)打印,又称快速成型制造,为实现微波设备提供了一种新颖且经济高效的方法。随着三维打印技术的快速发展和制造分辨率的提高,增材制造技术已经能够设计和制造更高太赫兹(THz)频段的电子设备,从而有助于缩小微波和光子之间的差距。与此同时,金属透镜也因其塑造电磁(EM)波面的能力而备受关注。金属透镜技术为波聚焦提供了一种前景广阔的解决方案,它超越了传统的介质透镜,具有重量轻、损耗低等优点,尤其是在太赫兹频率下。在本文中,我们将概述 3-D 打印太赫兹金属透镜的发展情况,从单层金属透镜到双层和三层配置。金属透镜的功能越来越强大,从单层金属透镜取代传统的光聚焦介质透镜,到双层金属透镜实现二维光束扫描、全息成像和可重构轨道角动量(OAM),再到三层金属透镜实现三维聚焦扫描。我们还讨论了太赫兹金属透镜的实用测量技术,并简要概述了推动三维打印金属透镜技术向前发展的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-D-Printed Terahertz Metalenses for Next-Generation Communication and Imaging Applications
Three-dimensional (3-D) printing, also known as additive manufacturing, provides a novel and cost-effective approach for implementing microwave devices. With the rapid advancement and improved manufacturing resolution of the 3-D printing technology, additive manufacturing has enabled the design and fabrication of electronic devices in higher terahertz (THz) frequency bands, contributing to bridging the gap between microwaves and photonics. Simultaneously, metalenses have garnered significant attention due to their ability to shape electromagnetic (EM) wavefronts. Metalens technology offers a promising solution for wave focusing, surpassing traditional dielectric lenses with advantages such as reduced weight and low loss, particularly at THz frequencies. In this article, we present an overview of the development of 3-D-printed THz metalenses, ranging from single metalenses to dual-layer and trilayer configurations. The functionality of the metalenses becomes more powerful, from replacing conventional light-focusing dielectric lenses for single-layer metalenses, achieving 2-D beam scanning, holographic imaging, and reconfigurable orbital angular momentum (OAM) for dual-layer metalenses, to enabling 3-D focus scanning for trilayer metalenses. We also discuss practical measurement technologies for THz metalenses and briefly outline the prospective to propel the 3-D-printed metalens technology forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the IEEE
Proceedings of the IEEE 工程技术-工程:电子与电气
CiteScore
46.40
自引率
1.00%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.
期刊最新文献
Front Cover Table of Contents IEEE Membership Future Special Issues/Special Sections of the Proceedings TechRxiv
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1