梭子鱼肌肉组织:野生鱼和养殖鱼的结构、酶、基因和蛋白质比较研究。

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Fish Physiology and Biochemistry Pub Date : 2024-08-01 Epub Date: 2024-05-11 DOI:10.1007/s10695-024-01354-1
Katrin Tönißen, George P Franz, Elke Albrecht, Philipp Lutze, Ralf Bochert, Bianka Grunow
{"title":"梭子鱼肌肉组织:野生鱼和养殖鱼的结构、酶、基因和蛋白质比较研究。","authors":"Katrin Tönißen, George P Franz, Elke Albrecht, Philipp Lutze, Ralf Bochert, Bianka Grunow","doi":"10.1007/s10695-024-01354-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"1527-1544"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish.\",\"authors\":\"Katrin Tönißen, George P Franz, Elke Albrecht, Philipp Lutze, Ralf Bochert, Bianka Grunow\",\"doi\":\"10.1007/s10695-024-01354-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"1527-1544\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01354-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01354-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

梭子鱼(Sander lucioperca)是一种淡水物种,也是国际上需求量很大的水产养殖鱼类。尽管对该鱼种进行了深入研究,但仍缺乏有关骨骼肌生物学和结构特征的基础知识。因此,我们对两种不同来源的梭子鱼成鱼的骨骼肌参数进行了综合分析,即从湖中野生捕捞的标本和在循环水产养殖系统中饲养的标本。分析包括生化特征(核酸、蛋白质含量)、酶活性(肌酸激酶、乳酸脱氢酶、NADP依赖性异柠檬酸脱氢酶)、肌肉特异性基因和蛋白质表达(与肌纤维形成、再生和永久生长、肌肉结构有关)以及肌纤维结构。研究结果显示,野生梭子鱼和养殖梭子鱼的骨骼肌存在明显差异。具体而言,核酸含量、酶活性和蛋白质表达均有显著差异。野生梭子鱼的酶活性较高,表明其肌肉中的代谢活动较强。相反,养殖的梭子鱼则表明其肌肉有明显增长的潜力。由于有关梭子鱼骨骼肌特征的数据稀少,我们的研究旨在从根本上了解成年梭子鱼肌肉的特征。所提供的数据为进一步研究梭鲈肌肉生物学奠定了基础,并有可能促进水产养殖实践的进步和调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish.

Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
期刊最新文献
Protium heptaphyllum essential oil from the fruit as a sedative and anesthetic in Rhamdia quelen: influence in cardiac frequency, biochemical, and oxidative parameters. Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae. Potency and mechanism of p-glycoprotein chemosensitizers in rainbow trout (Oncorhynchus mykiss) hepatocytes. Influence of dietary bitter orange peel powder on growth, body composition, blood parameters, gut morphometry, and thermal tolerance of Nile tilapia (Oreochromis niloticus). Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1