{"title":"透明质酸包裹的脂质体可通过肿瘤细胞靶向和延长全身暴露时间来增强新甘草酸的体内疗效。","authors":"Hongzhen Lv, Miao Miao, Zhichao Wu, Cheng Huang, Xiaozhu Tang, Rugen Yan","doi":"10.1080/08982104.2024.2348643","DOIUrl":null,"url":null,"abstract":"<p><p>Neogambogic acid (NGA), which possesses a variety of anticancer activities, is visualized as an anticancer bioactive ingredient. However, the huge vascular stimulation, poor aqueous solubility, and short half-life restricted its clinical use. In this work, an effective nanocarrier was explored to reduce toxicity and enhance the tumor-targeted delivery. Two liposomal formulations, neogambogic acid liposomes (NGA-L), and hyaluronic acid-coated neogambogic acid liposomes (HA-NGA-L) were prepared and characterized with high encapsulation efficiency, slow pattern of drug release, narrow size distribution and higher stability. The cytotoxicity and cellular uptake of HA-NGA-L were higher than those of NGA-L in MDA-MB-231 cells (high CD44 expression), while no obvious differences in MCF-7 cells with (low CD44 expression), suggesting the CD44-mediated cellular internalization of hyaluronic acid-modified liposomes enhanced the cytotoxicity. Mechanistically, elevation of Bax and caspase-3 as well as downregulation of Bcl-2 led to cell apoptosis. Besides, the vascular stimulation and the hemolysis test indicated good safety of HA-NGA-L. In addition, HA-NGA-L was the effective nanocarrier to repress tumor proliferation in MDA-MB-231 tumor xenograft mouse through CD44 mediated active targeting without any obvious histopathological abnormities on major organs. Immunohistochemistry analysis revealed the enhanced elevation of Bax and caspase-3, and reduced expression of Bcl-2 contribute to apoptosis in tumors. Meanwhile, HA-NGA-L increased the AUC and t<sub>1/2</sub> by 5.34-fold and 3.94-fold, respectively. In summary, the present study shows that HA-NGA-L may be safe and effective for the tumor-targeted delivery of neogambogic acid.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"605-616"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic acid-coated liposomes for enhanced <i>in vivo</i> efficacy of neogambogic acid <i>via</i> active tumor cell targeting and prolonged systemic exposure.\",\"authors\":\"Hongzhen Lv, Miao Miao, Zhichao Wu, Cheng Huang, Xiaozhu Tang, Rugen Yan\",\"doi\":\"10.1080/08982104.2024.2348643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neogambogic acid (NGA), which possesses a variety of anticancer activities, is visualized as an anticancer bioactive ingredient. However, the huge vascular stimulation, poor aqueous solubility, and short half-life restricted its clinical use. In this work, an effective nanocarrier was explored to reduce toxicity and enhance the tumor-targeted delivery. Two liposomal formulations, neogambogic acid liposomes (NGA-L), and hyaluronic acid-coated neogambogic acid liposomes (HA-NGA-L) were prepared and characterized with high encapsulation efficiency, slow pattern of drug release, narrow size distribution and higher stability. The cytotoxicity and cellular uptake of HA-NGA-L were higher than those of NGA-L in MDA-MB-231 cells (high CD44 expression), while no obvious differences in MCF-7 cells with (low CD44 expression), suggesting the CD44-mediated cellular internalization of hyaluronic acid-modified liposomes enhanced the cytotoxicity. Mechanistically, elevation of Bax and caspase-3 as well as downregulation of Bcl-2 led to cell apoptosis. Besides, the vascular stimulation and the hemolysis test indicated good safety of HA-NGA-L. In addition, HA-NGA-L was the effective nanocarrier to repress tumor proliferation in MDA-MB-231 tumor xenograft mouse through CD44 mediated active targeting without any obvious histopathological abnormities on major organs. Immunohistochemistry analysis revealed the enhanced elevation of Bax and caspase-3, and reduced expression of Bcl-2 contribute to apoptosis in tumors. Meanwhile, HA-NGA-L increased the AUC and t<sub>1/2</sub> by 5.34-fold and 3.94-fold, respectively. In summary, the present study shows that HA-NGA-L may be safe and effective for the tumor-targeted delivery of neogambogic acid.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":\" \",\"pages\":\"605-616\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2024.2348643\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2348643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hyaluronic acid-coated liposomes for enhanced in vivo efficacy of neogambogic acid via active tumor cell targeting and prolonged systemic exposure.
Neogambogic acid (NGA), which possesses a variety of anticancer activities, is visualized as an anticancer bioactive ingredient. However, the huge vascular stimulation, poor aqueous solubility, and short half-life restricted its clinical use. In this work, an effective nanocarrier was explored to reduce toxicity and enhance the tumor-targeted delivery. Two liposomal formulations, neogambogic acid liposomes (NGA-L), and hyaluronic acid-coated neogambogic acid liposomes (HA-NGA-L) were prepared and characterized with high encapsulation efficiency, slow pattern of drug release, narrow size distribution and higher stability. The cytotoxicity and cellular uptake of HA-NGA-L were higher than those of NGA-L in MDA-MB-231 cells (high CD44 expression), while no obvious differences in MCF-7 cells with (low CD44 expression), suggesting the CD44-mediated cellular internalization of hyaluronic acid-modified liposomes enhanced the cytotoxicity. Mechanistically, elevation of Bax and caspase-3 as well as downregulation of Bcl-2 led to cell apoptosis. Besides, the vascular stimulation and the hemolysis test indicated good safety of HA-NGA-L. In addition, HA-NGA-L was the effective nanocarrier to repress tumor proliferation in MDA-MB-231 tumor xenograft mouse through CD44 mediated active targeting without any obvious histopathological abnormities on major organs. Immunohistochemistry analysis revealed the enhanced elevation of Bax and caspase-3, and reduced expression of Bcl-2 contribute to apoptosis in tumors. Meanwhile, HA-NGA-L increased the AUC and t1/2 by 5.34-fold and 3.94-fold, respectively. In summary, the present study shows that HA-NGA-L may be safe and effective for the tumor-targeted delivery of neogambogic acid.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.