生物基介电和压电聚合物及其生物医学应用的最新进展。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-05-13 DOI:10.1039/D4TB00231H
Ali Yadegari, Mahsa Akbarzadeh, Farshad Kargaran, Ramin Mirzaee, Iman Salahshoori, Marcos A. L. Nobre and Hossein Ali Khonakdar
{"title":"生物基介电和压电聚合物及其生物医学应用的最新进展。","authors":"Ali Yadegari, Mahsa Akbarzadeh, Farshad Kargaran, Ramin Mirzaee, Iman Salahshoori, Marcos A. L. Nobre and Hossein Ali Khonakdar","doi":"10.1039/D4TB00231H","DOIUrl":null,"url":null,"abstract":"<p >The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in bio-based dielectric and piezoelectric polymers and their biomedical applications\",\"authors\":\"Ali Yadegari, Mahsa Akbarzadeh, Farshad Kargaran, Ramin Mirzaee, Iman Salahshoori, Marcos A. L. Nobre and Hossein Ali Khonakdar\",\"doi\":\"10.1039/D4TB00231H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00231h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00231h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

聚合物基介电材料的出现标志着介电材料领域的重大突破。然而,尽管它们有许多优点,却对环境造成了严重威胁。因此,近年来,生物基聚合物作为传统石油基聚合物的可持续替代品受到越来越多的关注。生物基聚合物具有可再生性,对环境的影响较小,可以满足人们对生态友好型替代品日益增长的需求。除了生态效益之外,生物基聚合物还具有独特的电学特性,使其在各种应用中极具吸引力。有鉴于此,我们在此介绍生物基介电聚合物和纳米复合材料的最新进展。首先,我们将介绍介电材料和聚合物基介电材料的基本概念。然后,我们将深入讨论生物基聚合物在介电性能和热稳定性方面的最新进展,包括聚乳酸、聚羟基烷酸酯、聚丁二酸丁二醇酯、淀粉、纤维素、壳聚糖、甲壳素、藻酸盐及其纳米复合材料。还指出了其他新型生物基介电聚合物及其独特的介电特性。在另一部分中,重点介绍并深入讨论了这些聚合物的压电特性及其最近的生物医学应用。总之,本文深入探讨了生物基介电聚合物的最新进展,以及它们为生物医学行业带来革命性变化的潜力,同时也为我们创造了一个更加可持续发展和更加绿色环保的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advancements in bio-based dielectric and piezoelectric polymers and their biomedical applications

The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Correction: Bioreducible and acid-labile polydiethylenetriamines with sequential degradability for efficient transgelin-2 siRNA delivery Correction: Development and characterization of a novel poly(N-isopropylacrylamide)-based thermoresponsive photoink and its applications in DLP bioprinting Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1