{"title":"学习内容感知特征融合,实现引导式深度图超分辨率","authors":"Yifan Zuo , Hao Wang , Yaping Xu , Huimin Huang , Xiaoshui Huang , Xue Xia , Yuming Fang","doi":"10.1016/j.image.2024.117140","DOIUrl":null,"url":null,"abstract":"<div><p>RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, <em>i.e.,</em> Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"126 ","pages":"Article 117140"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning content-aware feature fusion for guided depth map super-resolution\",\"authors\":\"Yifan Zuo , Hao Wang , Yaping Xu , Huimin Huang , Xiaoshui Huang , Xue Xia , Yuming Fang\",\"doi\":\"10.1016/j.image.2024.117140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, <em>i.e.,</em> Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"126 \",\"pages\":\"Article 117140\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000419\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Learning content-aware feature fusion for guided depth map super-resolution
RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, i.e., Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.