学习内容感知特征融合,实现引导式深度图超分辨率

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing-Image Communication Pub Date : 2024-05-09 DOI:10.1016/j.image.2024.117140
Yifan Zuo , Hao Wang , Yaping Xu , Huimin Huang , Xiaoshui Huang , Xue Xia , Yuming Fang
{"title":"学习内容感知特征融合,实现引导式深度图超分辨率","authors":"Yifan Zuo ,&nbsp;Hao Wang ,&nbsp;Yaping Xu ,&nbsp;Huimin Huang ,&nbsp;Xiaoshui Huang ,&nbsp;Xue Xia ,&nbsp;Yuming Fang","doi":"10.1016/j.image.2024.117140","DOIUrl":null,"url":null,"abstract":"<div><p>RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, <em>i.e.,</em> Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"126 ","pages":"Article 117140"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning content-aware feature fusion for guided depth map super-resolution\",\"authors\":\"Yifan Zuo ,&nbsp;Hao Wang ,&nbsp;Yaping Xu ,&nbsp;Huimin Huang ,&nbsp;Xiaoshui Huang ,&nbsp;Xue Xia ,&nbsp;Yuming Fang\",\"doi\":\"10.1016/j.image.2024.117140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, <em>i.e.,</em> Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"126 \",\"pages\":\"Article 117140\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000419\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

RGB-D 数据包括成对的 RGB 彩色图像和深度图,被广泛应用于下游计算机视觉任务中。然而,与获取高分辨率彩色图像相比,消费级传感器捕获的深度图分辨率总是很低。在数十年的研究中,最先进的深度图超分辨率(SOTA)方法无法通过空间共享卷积核的信道特征串联来自适应地调整所有特征位置的引导融合。为解决这一问题,本文提出了模拟传统三边联合滤波器(JTF)的 JTFNet。具体来说,本文引入了一个新颖的 JTF 块,用于自适应调整所有特征位置的颜色特征与深度特征之间的融合模式。此外,基于目标特征和引导特征呈跨尺度形状的 JTF 块变体,深度特征的融合是以双向方式进行的。因此,通过迭代 HR 特征引导,可以有效减少沿尺度的误差累积。与 SOTA 方法相比,我们在主流合成数据集和真实数据集(即 Middlebury、NYU 和 ToF-Mark)上进行了充分的实验,结果表明我们的 JTFNet 有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning content-aware feature fusion for guided depth map super-resolution

RGB-D data including paired RGB color images and depth maps is widely used in downstream computer vision tasks. However, compared with the acquisition of high-resolution color images, the depth maps captured by consumer-level sensors are always in low resolution. Within decades of research, the most state-of-the-art (SOTA) methods of depth map super-resolution cannot adaptively tune the guidance fusion for all feature positions by channel-wise feature concatenation with spatially sharing convolutional kernels. This paper proposes JTFNet to resolve this issue, which simulates the traditional Joint Trilateral Filter (JTF). Specifically, a novel JTF block is introduced to adaptively tune the fusion pattern between the color features and the depth features for all feature positions. Moreover, based on the variant of JTF block whose target features and guidance features are in the cross-scale shape, the fusion for depth features is performed in a bi-directional way. Therefore, the error accumulation along scales can be effectively mitigated by iteratively HR feature guidance. Compared with the SOTA methods, the sufficient experiment is conducted on the mainstream synthetic datasets and real datasets, i.e., Middlebury, NYU and ToF-Mark, which shows remarkable improvement of our JTFNet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
期刊最新文献
SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos Text in the dark: Extremely low-light text image enhancement High efficiency deep image compression via channel-wise scale adaptive latent representation learning Double supervision for scene text detection and recognition based on BMINet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1