晶体中位错与沉淀物的相互作用:从 BKS 模型到集体位错动力学

Lasse Laurson, Mikko J. Alava
{"title":"晶体中位错与沉淀物的相互作用:从 BKS 模型到集体位错动力学","authors":"Lasse Laurson,&nbsp;Mikko J. Alava","doi":"10.1186/s41313-024-00064-8","DOIUrl":null,"url":null,"abstract":"<div><p>The increase in the yield stress due to the presence of obstacles to dislocation motion such as precipitates is a multiscale phenomenon. The details on the nanoscale when an individual dislocation runs into a precipitate play an important role in determining plasticity on a macroscopic scale. The classical analysis of this phenomenon is due to Bacon, Kocks and Scattergood (BKS) from early 1970’s and has been followed by a large body of work both developing the theory and applying it to real experiments and their understanding. Beyond the microscopic details the next level of complexity is met in the micrometer scale when the physics of the yielding and the yield stress depend on two mechanisms: the dislocation-precipitate interaction, and the collective dynamics of the whole ensemble of dislocations in the volume. In this review we discuss the BKS relation and collective dislocation dynamics in precipitation-hardened crystals in the light of recent research, including large-scale discrete dislocation dynamics simulations, statistical physics ideas, and machine learning developments.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-024-00064-8","citationCount":"0","resultStr":"{\"title\":\"Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics\",\"authors\":\"Lasse Laurson,&nbsp;Mikko J. Alava\",\"doi\":\"10.1186/s41313-024-00064-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increase in the yield stress due to the presence of obstacles to dislocation motion such as precipitates is a multiscale phenomenon. The details on the nanoscale when an individual dislocation runs into a precipitate play an important role in determining plasticity on a macroscopic scale. The classical analysis of this phenomenon is due to Bacon, Kocks and Scattergood (BKS) from early 1970’s and has been followed by a large body of work both developing the theory and applying it to real experiments and their understanding. Beyond the microscopic details the next level of complexity is met in the micrometer scale when the physics of the yielding and the yield stress depend on two mechanisms: the dislocation-precipitate interaction, and the collective dynamics of the whole ensemble of dislocations in the volume. In this review we discuss the BKS relation and collective dislocation dynamics in precipitation-hardened crystals in the light of recent research, including large-scale discrete dislocation dynamics simulations, statistical physics ideas, and machine learning developments.</p></div>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-024-00064-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-024-00064-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-024-00064-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于位错运动障碍物(如沉淀物)的存在而导致屈服应力增加是一种多尺度现象。当单个位错遇到沉淀物时,纳米尺度上的细节对宏观尺度上的塑性起着重要作用。培根、考克斯和斯卡特古德(BKS)在 20 世纪 70 年代初对这一现象进行了经典分析,随后又进行了大量工作,既发展了这一理论,又将其应用于实际实验和对其的理解。除了微观细节之外,在微米尺度上,屈服和屈服应力的物理机制取决于两种机制:位错与沉淀物之间的相互作用,以及体积中整个位错集合的集体动力学。在这篇综述中,我们将结合最近的研究,包括大规模离散位错动力学模拟、统计物理学思想和机器学习的发展,讨论沉淀硬化晶体中的 BKS 关系和集体位错动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics

The increase in the yield stress due to the presence of obstacles to dislocation motion such as precipitates is a multiscale phenomenon. The details on the nanoscale when an individual dislocation runs into a precipitate play an important role in determining plasticity on a macroscopic scale. The classical analysis of this phenomenon is due to Bacon, Kocks and Scattergood (BKS) from early 1970’s and has been followed by a large body of work both developing the theory and applying it to real experiments and their understanding. Beyond the microscopic details the next level of complexity is met in the micrometer scale when the physics of the yielding and the yield stress depend on two mechanisms: the dislocation-precipitate interaction, and the collective dynamics of the whole ensemble of dislocations in the volume. In this review we discuss the BKS relation and collective dislocation dynamics in precipitation-hardened crystals in the light of recent research, including large-scale discrete dislocation dynamics simulations, statistical physics ideas, and machine learning developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
期刊最新文献
Junction formation rates, residence times, and the rate of plastic flow in FCC metals A model for physical dislocation transmission through grain boundaries and its implementation in a discrete dislocation dynamics tool Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics Strengthening from dislocation restructuring and local climb at platelet linear complexions in Al-Cu alloys Contrasting the nature of plastic fluctuations in small-sized systems of BCC and FCC materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1