{"title":"丙酮酸激酶 M2-异构体和果糖-1,6-二磷酸醛缩酶的糖酵解酶随年龄的变化:对老年性黄斑变性的影响。","authors":"Ammaji Rajala, Raju V S Rajala","doi":"10.14336/AD.2024.0077","DOIUrl":null,"url":null,"abstract":"<p><p>Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":"2271-2283"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration.\",\"authors\":\"Ammaji Rajala, Raju V S Rajala\",\"doi\":\"10.14336/AD.2024.0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"2271-2283\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2024.0077\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.0077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration.
Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.