{"title":"用简化的注释框架简化事件提取。","authors":"Chanatip Saetia, Areeya Thonglong, Thanpitcha Amornchaiteera, Tawunrat Chalothorn, Supawat Taerungruang, Pakpoom Buabthong","doi":"10.3389/frai.2024.1361483","DOIUrl":null,"url":null,"abstract":"<p><p>Event extraction, grounded in semantic relationships, can serve as a simplified relation extraction. In this study, we propose an efficient open-domain event annotation framework tailored for subsequent information extraction, with a specific focus on its applicability to low-resource languages. The proposed event annotation method, which is based on event semantic elements, demonstrates substantial time-efficiency gains over traditional Universal Dependencies (UD) tagging. We show how language-specific pretraining outperforms multilingual counterparts in entity and relation extraction tasks and emphasize the importance of task- and language-specific fine-tuning for optimal model performance. Furthermore, we demonstrate the improvement of model performance upon integrating UD information during pre-training, achieving the F1 score of 71.16 and 60.43% for entity and relation extraction respectively. In addition, we showcase the usage of our extracted event graph for improving node classification in a retail banking domain. This work provides valuable guidance on improving information extraction and outlines a methodology for developing training datasets, particularly for low-resource languages.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Streamlining event extraction with a simplified annotation framework.\",\"authors\":\"Chanatip Saetia, Areeya Thonglong, Thanpitcha Amornchaiteera, Tawunrat Chalothorn, Supawat Taerungruang, Pakpoom Buabthong\",\"doi\":\"10.3389/frai.2024.1361483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Event extraction, grounded in semantic relationships, can serve as a simplified relation extraction. In this study, we propose an efficient open-domain event annotation framework tailored for subsequent information extraction, with a specific focus on its applicability to low-resource languages. The proposed event annotation method, which is based on event semantic elements, demonstrates substantial time-efficiency gains over traditional Universal Dependencies (UD) tagging. We show how language-specific pretraining outperforms multilingual counterparts in entity and relation extraction tasks and emphasize the importance of task- and language-specific fine-tuning for optimal model performance. Furthermore, we demonstrate the improvement of model performance upon integrating UD information during pre-training, achieving the F1 score of 71.16 and 60.43% for entity and relation extraction respectively. In addition, we showcase the usage of our extracted event graph for improving node classification in a retail banking domain. This work provides valuable guidance on improving information extraction and outlines a methodology for developing training datasets, particularly for low-resource languages.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1361483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1361483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
以语义关系为基础的事件提取可以作为简化的关系提取。在本研究中,我们提出了一种为后续信息提取量身定制的高效开放域事件注释框架,并特别关注其在低资源语言中的适用性。所提出的事件注释方法基于事件语义元素,与传统的通用依赖关系(UD)标记法相比,大大提高了时间效率。我们展示了在实体和关系提取任务中,特定语言的预训练如何优于多语言同行,并强调了任务和特定语言微调对优化模型性能的重要性。此外,我们还展示了在预训练过程中整合 UD 信息后模型性能的提升,在实体和关系提取方面的 F1 分数分别达到了 71.16% 和 60.43%。此外,我们还展示了如何利用提取的事件图改进零售银行领域的节点分类。这项工作为改进信息提取提供了有价值的指导,并概述了开发训练数据集的方法,尤其是针对低资源语言的训练数据集。
Streamlining event extraction with a simplified annotation framework.
Event extraction, grounded in semantic relationships, can serve as a simplified relation extraction. In this study, we propose an efficient open-domain event annotation framework tailored for subsequent information extraction, with a specific focus on its applicability to low-resource languages. The proposed event annotation method, which is based on event semantic elements, demonstrates substantial time-efficiency gains over traditional Universal Dependencies (UD) tagging. We show how language-specific pretraining outperforms multilingual counterparts in entity and relation extraction tasks and emphasize the importance of task- and language-specific fine-tuning for optimal model performance. Furthermore, we demonstrate the improvement of model performance upon integrating UD information during pre-training, achieving the F1 score of 71.16 and 60.43% for entity and relation extraction respectively. In addition, we showcase the usage of our extracted event graph for improving node classification in a retail banking domain. This work provides valuable guidance on improving information extraction and outlines a methodology for developing training datasets, particularly for low-resource languages.