胎儿生长受限的长期神经后果;对大脑储备的影响。

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2024-05-14 DOI:10.1159/000539266
Divyen K Shah, Susana Pereira, Gregory A Lodygensky
{"title":"胎儿生长受限的长期神经后果;对大脑储备的影响。","authors":"Divyen K Shah, Susana Pereira, Gregory A Lodygensky","doi":"10.1159/000539266","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.</p><p><strong>Summary: </strong>In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.</p><p><strong>Key messages: </strong>FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-8"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Neurologic Consequences following Fetal Growth Restriction: The Impact on Brain Reserve.\",\"authors\":\"Divyen K Shah, Susana Pereira, Gregory A Lodygensky\",\"doi\":\"10.1159/000539266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.</p><p><strong>Summary: </strong>In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.</p><p><strong>Key messages: </strong>FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000539266\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:胎儿生长受限(FGR)是指胎儿无法根据遗传潜能和胎龄获得足够的体重增长。摘要:在这篇综述中,我们探讨了 FGR 诊断和分类所面临的挑战。我们回顾了胎儿长期缺氧对大脑发育的影响。我们介绍了使用核磁共振成像技术进行胎盘和胎儿大脑成像的最新进展,以及这些技术如何为研究人类生长受限提供新的非侵入性手段。接下来,我们将回顾胎儿生长受限对新生儿期、儿童后期和成年期大脑完整性的影响,并回顾现有的治疗方法:关键信息:胎儿生长受限的后果不仅限于围产期。我们假设,根据结构和大小定义的大脑储备受损可能预示着这组患者认知能力受损和老年痴呆症的一些流行病学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-Term Neurologic Consequences following Fetal Growth Restriction: The Impact on Brain Reserve.

Background: Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.

Summary: In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.

Key messages: FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1