Wangmin Cai, Peiqiang Liu, Zunfang Wang, Hong Jiang, Chang Liu, Zhaojie Fei, Zhuang Yang
{"title":"蛋白质-蛋白质相互作用网络中的链接预测:长度为三的路径的相似性乘以相似性算法。","authors":"Wangmin Cai, Peiqiang Liu, Zunfang Wang, Hong Jiang, Chang Liu, Zhaojie Fei, Zhuang Yang","doi":"10.1016/j.jtbi.2024.111850","DOIUrl":null,"url":null,"abstract":"<div><p>Protein–protein interactions (PPIs) are crucial for various biological processes, and predicting PPIs is a major challenge. To solve this issue, the most common method is link prediction. Currently, the link prediction methods based on network Paths of Length Three (L3) have been proven to be highly effective. In this paper, we propose a novel link prediction algorithm, named SMS, which is based on L3 and protein similarities. We first design a mixed similarity that combines the topological structure and attribute features of nodes. Then, we compute the predicted value by summing the product of all similarities along the L3. Furthermore, we propose the Max Similarity Multiplied Similarity (maxSMS) algorithm from the perspective of maximum impact. Our computational prediction results show that on six datasets, including S. cerevisiae, H. sapiens, and others, the maxSMS algorithm improves the precision of the top 500, area under the precision–recall curve, and normalized discounted cumulative gain by an average of 26.99%, 53.67%, and 6.7%, respectively, compared to other optimal methods.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Link prediction in protein–protein interaction network: A similarity multiplied similarity algorithm with paths of length three\",\"authors\":\"Wangmin Cai, Peiqiang Liu, Zunfang Wang, Hong Jiang, Chang Liu, Zhaojie Fei, Zhuang Yang\",\"doi\":\"10.1016/j.jtbi.2024.111850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein–protein interactions (PPIs) are crucial for various biological processes, and predicting PPIs is a major challenge. To solve this issue, the most common method is link prediction. Currently, the link prediction methods based on network Paths of Length Three (L3) have been proven to be highly effective. In this paper, we propose a novel link prediction algorithm, named SMS, which is based on L3 and protein similarities. We first design a mixed similarity that combines the topological structure and attribute features of nodes. Then, we compute the predicted value by summing the product of all similarities along the L3. Furthermore, we propose the Max Similarity Multiplied Similarity (maxSMS) algorithm from the perspective of maximum impact. Our computational prediction results show that on six datasets, including S. cerevisiae, H. sapiens, and others, the maxSMS algorithm improves the precision of the top 500, area under the precision–recall curve, and normalized discounted cumulative gain by an average of 26.99%, 53.67%, and 6.7%, respectively, compared to other optimal methods.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324001310\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Link prediction in protein–protein interaction network: A similarity multiplied similarity algorithm with paths of length three
Protein–protein interactions (PPIs) are crucial for various biological processes, and predicting PPIs is a major challenge. To solve this issue, the most common method is link prediction. Currently, the link prediction methods based on network Paths of Length Three (L3) have been proven to be highly effective. In this paper, we propose a novel link prediction algorithm, named SMS, which is based on L3 and protein similarities. We first design a mixed similarity that combines the topological structure and attribute features of nodes. Then, we compute the predicted value by summing the product of all similarities along the L3. Furthermore, we propose the Max Similarity Multiplied Similarity (maxSMS) algorithm from the perspective of maximum impact. Our computational prediction results show that on six datasets, including S. cerevisiae, H. sapiens, and others, the maxSMS algorithm improves the precision of the top 500, area under the precision–recall curve, and normalized discounted cumulative gain by an average of 26.99%, 53.67%, and 6.7%, respectively, compared to other optimal methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.