Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu
{"title":"非视距动态成像的即插即用算法","authors":"Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu","doi":"10.1145/3665139","DOIUrl":null,"url":null,"abstract":"<p>Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"32 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plug-and-Play Algorithms for Dynamic Non-line-of-sight Imaging\",\"authors\":\"Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu\",\"doi\":\"10.1145/3665139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665139\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665139","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Plug-and-Play Algorithms for Dynamic Non-line-of-sight Imaging
Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.