基于深度学习的肱骨岬骨软骨炎闭锁症计算机辅助诊断(使用超声图像

IF 4.4 1区 医学 Q1 ORTHOPEDICS Journal of Bone and Joint Surgery, American Volume Pub Date : 2024-12-04 Epub Date: 2024-05-14 DOI:10.2106/JBJS.23.01164
Kenta Takatsuji, Yoshikazu Kida, Kenta Sasaki, Daisuke Fujita, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshihiro Kotoura, Masataka Minami, Syoji Kobashi, Kenji Takahashi
{"title":"基于深度学习的肱骨岬骨软骨炎闭锁症计算机辅助诊断(使用超声图像","authors":"Kenta Takatsuji, Yoshikazu Kida, Kenta Sasaki, Daisuke Fujita, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshihiro Kotoura, Masataka Minami, Syoji Kobashi, Kenji Takahashi","doi":"10.2106/JBJS.23.01164","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ultrasonography is used to diagnose osteochondritis dissecans (OCD) of the humerus; however, its reliability depends on the technical proficiency of the examiner. Recently, computer-aided diagnosis (CAD) using deep learning has been applied in the field of medical science, and high diagnostic accuracy has been reported. We aimed to develop a deep learning-based CAD system for OCD detection on ultrasound images and to evaluate the accuracy of OCD detection using the CAD system.</p><p><strong>Methods: </strong>The CAD process comprises 2 steps: humeral capitellum detection using an object-detection algorithm and OCD classification using an image classification network. Four-directional ultrasound images of the elbow of the throwing arm of 196 baseball players (mean age, 11.2 years), including 104 players with normal findings and 92 with OCD, were used for training and validation. An external dataset of 20 baseball players (10 with normal findings and 10 with OCD) was used to evaluate the accuracy of the CAD system. A confusion matrix and the area under the receiver operating characteristic curve (AUC) were used to evaluate the system.</p><p><strong>Results: </strong>Clinical evaluation using the external dataset resulted in high AUCs in all 4 directions: 0.969 for the anterior long axis, 0.966 for the anterior short axis, 0.996 for the posterior long axis, and 0.993 for the posterior short axis. The accuracy of OCD detection thus exceeded 0.9 in all 4 directions.</p><p><strong>Conclusions: </strong>We propose a deep learning-based CAD system to detect OCD lesions on ultrasound images. The CAD system achieved high accuracy in all 4 directions of the elbow. This CAD system with a deep learning model may be useful for OCD screening during medical checkups to reduce the probability of missing an OCD lesion.</p><p><strong>Level of evidence: </strong>Diagnostic Level II . See Instructions for Authors for a complete description of levels of evidence.</p>","PeriodicalId":15273,"journal":{"name":"Journal of Bone and Joint Surgery, American Volume","volume":" ","pages":"2196-2204"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Computer-Aided Diagnosis of Osteochondritis Dissecans of the Humeral Capitellum Using Ultrasound Images.\",\"authors\":\"Kenta Takatsuji, Yoshikazu Kida, Kenta Sasaki, Daisuke Fujita, Yusuke Kobayashi, Tsuyoshi Sukenari, Yoshihiro Kotoura, Masataka Minami, Syoji Kobashi, Kenji Takahashi\",\"doi\":\"10.2106/JBJS.23.01164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ultrasonography is used to diagnose osteochondritis dissecans (OCD) of the humerus; however, its reliability depends on the technical proficiency of the examiner. Recently, computer-aided diagnosis (CAD) using deep learning has been applied in the field of medical science, and high diagnostic accuracy has been reported. We aimed to develop a deep learning-based CAD system for OCD detection on ultrasound images and to evaluate the accuracy of OCD detection using the CAD system.</p><p><strong>Methods: </strong>The CAD process comprises 2 steps: humeral capitellum detection using an object-detection algorithm and OCD classification using an image classification network. Four-directional ultrasound images of the elbow of the throwing arm of 196 baseball players (mean age, 11.2 years), including 104 players with normal findings and 92 with OCD, were used for training and validation. An external dataset of 20 baseball players (10 with normal findings and 10 with OCD) was used to evaluate the accuracy of the CAD system. A confusion matrix and the area under the receiver operating characteristic curve (AUC) were used to evaluate the system.</p><p><strong>Results: </strong>Clinical evaluation using the external dataset resulted in high AUCs in all 4 directions: 0.969 for the anterior long axis, 0.966 for the anterior short axis, 0.996 for the posterior long axis, and 0.993 for the posterior short axis. The accuracy of OCD detection thus exceeded 0.9 in all 4 directions.</p><p><strong>Conclusions: </strong>We propose a deep learning-based CAD system to detect OCD lesions on ultrasound images. The CAD system achieved high accuracy in all 4 directions of the elbow. This CAD system with a deep learning model may be useful for OCD screening during medical checkups to reduce the probability of missing an OCD lesion.</p><p><strong>Level of evidence: </strong>Diagnostic Level II . See Instructions for Authors for a complete description of levels of evidence.</p>\",\"PeriodicalId\":15273,\"journal\":{\"name\":\"Journal of Bone and Joint Surgery, American Volume\",\"volume\":\" \",\"pages\":\"2196-2204\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Joint Surgery, American Volume\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2106/JBJS.23.01164\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Joint Surgery, American Volume","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2106/JBJS.23.01164","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:超声波检查用于诊断肱骨骨软骨炎(OCD),但其可靠性取决于检查者的技术熟练程度。最近,使用深度学习的计算机辅助诊断(CAD)已被应用于医学领域,并报道了较高的诊断准确性。我们的目的是开发一种基于深度学习的计算机辅助诊断系统,用于在超声图像上检测 OCD,并评估使用该计算机辅助诊断系统检测 OCD 的准确性:CAD过程包括两个步骤:使用对象检测算法检测肱骨岬和使用图像分类网络进行OCD分类。196名棒球运动员(平均年龄11.2岁)投掷臂肘部的四维超声波图像被用于训练和验证,其中104人结果正常,92人患有OCD。为了评估 CAD 系统的准确性,还使用了一个由 20 名棒球运动员(10 名检查结果正常,10 名患有 OCD)组成的外部数据集。混淆矩阵和接收器工作特征曲线下面积(AUC)用于评估该系统:使用外部数据集进行临床评估后,四个方向的 AUC 都很高:前长轴为 0.969,前短轴为 0.966,后长轴为 0.996,后短轴为 0.993。因此,在所有 4 个方向上,OCD 检测的准确率都超过了 0.9:我们提出了一种基于深度学习的 CAD 系统来检测超声图像上的 OCD 病变。该 CAD 系统在肘部所有 4 个方向上都达到了很高的准确率。这种带有深度学习模型的 CAD 系统可用于体检中的强迫症筛查,以降低漏诊强迫症病变的概率:诊断级别 II。有关证据级别的完整描述,请参阅 "作者须知"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-Based Computer-Aided Diagnosis of Osteochondritis Dissecans of the Humeral Capitellum Using Ultrasound Images.

Background: Ultrasonography is used to diagnose osteochondritis dissecans (OCD) of the humerus; however, its reliability depends on the technical proficiency of the examiner. Recently, computer-aided diagnosis (CAD) using deep learning has been applied in the field of medical science, and high diagnostic accuracy has been reported. We aimed to develop a deep learning-based CAD system for OCD detection on ultrasound images and to evaluate the accuracy of OCD detection using the CAD system.

Methods: The CAD process comprises 2 steps: humeral capitellum detection using an object-detection algorithm and OCD classification using an image classification network. Four-directional ultrasound images of the elbow of the throwing arm of 196 baseball players (mean age, 11.2 years), including 104 players with normal findings and 92 with OCD, were used for training and validation. An external dataset of 20 baseball players (10 with normal findings and 10 with OCD) was used to evaluate the accuracy of the CAD system. A confusion matrix and the area under the receiver operating characteristic curve (AUC) were used to evaluate the system.

Results: Clinical evaluation using the external dataset resulted in high AUCs in all 4 directions: 0.969 for the anterior long axis, 0.966 for the anterior short axis, 0.996 for the posterior long axis, and 0.993 for the posterior short axis. The accuracy of OCD detection thus exceeded 0.9 in all 4 directions.

Conclusions: We propose a deep learning-based CAD system to detect OCD lesions on ultrasound images. The CAD system achieved high accuracy in all 4 directions of the elbow. This CAD system with a deep learning model may be useful for OCD screening during medical checkups to reduce the probability of missing an OCD lesion.

Level of evidence: Diagnostic Level II . See Instructions for Authors for a complete description of levels of evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
7.50%
发文量
660
审稿时长
1 months
期刊介绍: The Journal of Bone & Joint Surgery (JBJS) has been the most valued source of information for orthopaedic surgeons and researchers for over 125 years and is the gold standard in peer-reviewed scientific information in the field. A core journal and essential reading for general as well as specialist orthopaedic surgeons worldwide, The Journal publishes evidence-based research to enhance the quality of care for orthopaedic patients. Standards of excellence and high quality are maintained in everything we do, from the science of the content published to the customer service we provide. JBJS is an independent, non-profit journal.
期刊最新文献
Delayed Surgery Increases the Rate of Infection in Closed Diaphyseal Tibial and Femoral Fractures. Outcomes of Calcaneal Lengthening Osteotomy in Ambulatory Patients with Cerebral Palsy and Planovalgus Foot Deformity. Enhanced Antibiotic Release and Mechanical Strength in UHMWPE Antibiotic Blends: The Role of Submicron Gentamicin Sulfate Particles. Common Comorbidities and a Comparison of 4 Comorbidity Indices in Patients Undergoing Orthopaedic Oncology Surgery. Intraoperative Tranexamic Acid Infusion Reduces Perioperative Blood Loss in Pediatric Limb-Salvage Surgeries: A Double-Blinded Randomized Placebo-Controlled Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1