{"title":"使用基于 TiO2 纳米材料的不同纳米材料对光催化灭活室内空气净化中病原微生物的评估。","authors":"Leila Fatolahi","doi":"10.1080/10934529.2024.2352312","DOIUrl":null,"url":null,"abstract":"<p><p>The photocatalytic technology for indoor air disinfection has been broadly studied in the last decade. Selecting proper photocatalysts with high disinfection efficiency remains to be a challenge. By doping with the incorporation of metals, the bandgap can be narrowed while avoiding the recombination of photogenerated charge. Three photocatalysts (Ag-TiO<sub>2</sub>, MnO<sub>2</sub>-TiO<sub>2</sub>, and MnS<sub>2</sub>-TiO<sub>2</sub>) were tested in photocatalytic sterilization process. The results revealed that Ag-TiO<sub>2</sub> had the best antibacterial performance. Within 20 min, the concentration of <i>Serratia marcescens</i> (the tested bacteria) decreased log number of ln 4.04 under 640 w/m<sup>2</sup> light intensity with 1000 µg/mL of Ag-TiO<sub>2</sub>. During the process of inactivating bacteria, the cell membranes of bacterial was destructed and thus decreasing the activity of enzymes and releasing the cell contents, due to the generation of reactive oxygen species (O<sub>2</sub>•<sup>-</sup> and •OH) and thermal effect. Spectral regulation has the greatest impact on the sterilization efficiency of MnO<sub>2</sub>-TiO<sub>2</sub>, which reduces the probability of photocatalytic materials being excited.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"213-222"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of photocatalysis inactivation in indoor air purification of pathogenic microbes by using the different nanomaterials based on TiO<sub>2</sub> nanomaterials.\",\"authors\":\"Leila Fatolahi\",\"doi\":\"10.1080/10934529.2024.2352312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The photocatalytic technology for indoor air disinfection has been broadly studied in the last decade. Selecting proper photocatalysts with high disinfection efficiency remains to be a challenge. By doping with the incorporation of metals, the bandgap can be narrowed while avoiding the recombination of photogenerated charge. Three photocatalysts (Ag-TiO<sub>2</sub>, MnO<sub>2</sub>-TiO<sub>2</sub>, and MnS<sub>2</sub>-TiO<sub>2</sub>) were tested in photocatalytic sterilization process. The results revealed that Ag-TiO<sub>2</sub> had the best antibacterial performance. Within 20 min, the concentration of <i>Serratia marcescens</i> (the tested bacteria) decreased log number of ln 4.04 under 640 w/m<sup>2</sup> light intensity with 1000 µg/mL of Ag-TiO<sub>2</sub>. During the process of inactivating bacteria, the cell membranes of bacterial was destructed and thus decreasing the activity of enzymes and releasing the cell contents, due to the generation of reactive oxygen species (O<sub>2</sub>•<sup>-</sup> and •OH) and thermal effect. Spectral regulation has the greatest impact on the sterilization efficiency of MnO<sub>2</sub>-TiO<sub>2</sub>, which reduces the probability of photocatalytic materials being excited.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"213-222\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2352312\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2352312","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Evaluation of photocatalysis inactivation in indoor air purification of pathogenic microbes by using the different nanomaterials based on TiO2 nanomaterials.
The photocatalytic technology for indoor air disinfection has been broadly studied in the last decade. Selecting proper photocatalysts with high disinfection efficiency remains to be a challenge. By doping with the incorporation of metals, the bandgap can be narrowed while avoiding the recombination of photogenerated charge. Three photocatalysts (Ag-TiO2, MnO2-TiO2, and MnS2-TiO2) were tested in photocatalytic sterilization process. The results revealed that Ag-TiO2 had the best antibacterial performance. Within 20 min, the concentration of Serratia marcescens (the tested bacteria) decreased log number of ln 4.04 under 640 w/m2 light intensity with 1000 µg/mL of Ag-TiO2. During the process of inactivating bacteria, the cell membranes of bacterial was destructed and thus decreasing the activity of enzymes and releasing the cell contents, due to the generation of reactive oxygen species (O2•- and •OH) and thermal effect. Spectral regulation has the greatest impact on the sterilization efficiency of MnO2-TiO2, which reduces the probability of photocatalytic materials being excited.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.