Le Zhang, Linxin Qin, Lanting Ma, Zhe Shen, Yabin Jin, Si Chen
{"title":"利用电凝和一体化膜处理电镀废水。","authors":"Le Zhang, Linxin Qin, Lanting Ma, Zhe Shen, Yabin Jin, Si Chen","doi":"10.2166/wst.2024.136","DOIUrl":null,"url":null,"abstract":"<p><p>Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm<sup>2</sup>, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of electroplating wastewater using electrocoagulation and integrated membrane.\",\"authors\":\"Le Zhang, Linxin Qin, Lanting Ma, Zhe Shen, Yabin Jin, Si Chen\",\"doi\":\"10.2166/wst.2024.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm<sup>2</sup>, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.136\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.136","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Treatment of electroplating wastewater using electrocoagulation and integrated membrane.
Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.