Junhong Cai , Xiaochen Liang , Yuting Sun , Shan Bao
{"title":"人脐带间充质干细胞(HUCMSC)移植对环磷酰胺(CTX)诱导的西藏小型猪卵巢早衰(POF)的有益影响。","authors":"Junhong Cai , Xiaochen Liang , Yuting Sun , Shan Bao","doi":"10.1016/j.trim.2024.102051","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF.</p></div><div><h3>Methods</h3><p>We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression.</p></div><div><h3>Results</h3><p>Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all <em>p</em> < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all <em>p</em> < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all <em>p</em> < 0.05), suggesting the inhibition of ovarian cell apoptosis.</p></div><div><h3>Conclusion</h3><p>Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.</p></div>","PeriodicalId":23304,"journal":{"name":"Transplant immunology","volume":"84 ","pages":"Article 102051"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs\",\"authors\":\"Junhong Cai , Xiaochen Liang , Yuting Sun , Shan Bao\",\"doi\":\"10.1016/j.trim.2024.102051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF.</p></div><div><h3>Methods</h3><p>We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression.</p></div><div><h3>Results</h3><p>Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all <em>p</em> < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all <em>p</em> < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all <em>p</em> < 0.05), suggesting the inhibition of ovarian cell apoptosis.</p></div><div><h3>Conclusion</h3><p>Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.</p></div>\",\"PeriodicalId\":23304,\"journal\":{\"name\":\"Transplant immunology\",\"volume\":\"84 \",\"pages\":\"Article 102051\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplant immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966327424000674\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplant immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966327424000674","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs
Background
Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF.
Methods
We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression.
Results
Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all p < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all p < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all p < 0.05), suggesting the inhibition of ovarian cell apoptosis.
Conclusion
Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.
期刊介绍:
Transplant Immunology will publish up-to-date information on all aspects of the broad field it encompasses. The journal will be directed at (basic) scientists, tissue typers, transplant physicians and surgeons, and research and data on all immunological aspects of organ-, tissue- and (haematopoietic) stem cell transplantation are of potential interest to the readers of Transplant Immunology. Original papers, Review articles and Hypotheses will be considered for publication and submitted manuscripts will be rapidly peer-reviewed and published. They will be judged on the basis of scientific merit, originality, timeliness and quality.