Christina L. Koumpoura, Laure Vendier, Christian Bijani, Anne Robert, Philippe Carbonnière, Jean-Marc Sotiropoulos and Michel Baltas
{"title":"利用 lawsone† 通过机械化学激活的 Biginelli 反应生成前所未有的线性产物","authors":"Christina L. Koumpoura, Laure Vendier, Christian Bijani, Anne Robert, Philippe Carbonnière, Jean-Marc Sotiropoulos and Michel Baltas","doi":"10.1039/D3MR00032J","DOIUrl":null,"url":null,"abstract":"<p >The Biginelli reaction, a crucial multicomponent reaction, was investigated involving 2-hydroxy-1,4-naphthoquinone (lawsone), <em>p</em>-substituted benzaldehydes, and ureas. Surprisingly, the classic Biginelli cyclized DHPM was not observed under various experimental conditions. Mechanochemical conditions, unlike traditional liquid phase conditions, led to the unprecedented formation of a series of ‘Biginelli-linear’ lawsone derivatives with high yields. The observed outcomes were consistent with DFT theoretical predictions, highlighting the preference for the Michael adduct under liquid conditions and the energetically implausible cyclization pathway for the classic DHPM compound. Additionally, the study achieved the novel cyclization of a ‘Biginelli-linear’ lawsone derivative into a cyclic carbamate for the first time.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00032j?page=search","citationCount":"0","resultStr":"{\"title\":\"Unprecedented linear products by a mechanochemically activated Biginelli reaction using lawsone†\",\"authors\":\"Christina L. Koumpoura, Laure Vendier, Christian Bijani, Anne Robert, Philippe Carbonnière, Jean-Marc Sotiropoulos and Michel Baltas\",\"doi\":\"10.1039/D3MR00032J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Biginelli reaction, a crucial multicomponent reaction, was investigated involving 2-hydroxy-1,4-naphthoquinone (lawsone), <em>p</em>-substituted benzaldehydes, and ureas. Surprisingly, the classic Biginelli cyclized DHPM was not observed under various experimental conditions. Mechanochemical conditions, unlike traditional liquid phase conditions, led to the unprecedented formation of a series of ‘Biginelli-linear’ lawsone derivatives with high yields. The observed outcomes were consistent with DFT theoretical predictions, highlighting the preference for the Michael adduct under liquid conditions and the energetically implausible cyclization pathway for the classic DHPM compound. Additionally, the study achieved the novel cyclization of a ‘Biginelli-linear’ lawsone derivative into a cyclic carbamate for the first time.</p>\",\"PeriodicalId\":101140,\"journal\":{\"name\":\"RSC Mechanochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00032j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Mechanochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d3mr00032j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d3mr00032j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unprecedented linear products by a mechanochemically activated Biginelli reaction using lawsone†
The Biginelli reaction, a crucial multicomponent reaction, was investigated involving 2-hydroxy-1,4-naphthoquinone (lawsone), p-substituted benzaldehydes, and ureas. Surprisingly, the classic Biginelli cyclized DHPM was not observed under various experimental conditions. Mechanochemical conditions, unlike traditional liquid phase conditions, led to the unprecedented formation of a series of ‘Biginelli-linear’ lawsone derivatives with high yields. The observed outcomes were consistent with DFT theoretical predictions, highlighting the preference for the Michael adduct under liquid conditions and the energetically implausible cyclization pathway for the classic DHPM compound. Additionally, the study achieved the novel cyclization of a ‘Biginelli-linear’ lawsone derivative into a cyclic carbamate for the first time.