差异襟翼挠度改善翼型复合直升机的性能

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aircraft Pub Date : 2024-05-08 DOI:10.2514/1.c037307
Hideaki Sugawara, Yasutada Tanabe, Masaharu Kameda
{"title":"差异襟翼挠度改善翼型复合直升机的性能","authors":"Hideaki Sugawara, Yasutada Tanabe, Masaharu Kameda","doi":"10.2514/1.c037307","DOIUrl":null,"url":null,"abstract":"<p>A lift-offset system for a single-rotor-type compound helicopter is proposed to improve the aerodynamic performance in high-speed flight. The proposed system utilizes the differential flap deflections on the fixed wings to produce a rolling moment, which is counteracted by the single main rotor, causing the rotor to operate in a lift-offset state. The performance of the proposed system is evaluated through numerical simulations. At first, the effect of lift offset with regard to lift-share ratio on the rotor performance is investigated. Then, the impact of lift offset due to the differential flaps on the overall effective lift-to-drag ratio is studied. The results show that the lift offset significantly improves the rotor performance and the overall effective lift-to-drag ratios, especially at larger rotor lift-share ratios. The overall effective lift-to-drag ratio increases by 10% due to the differential flaps compared to the zero-flap deflections. It is concluded that the lift offset due to the differential flaps achieves more efficient cruising flight for a single-rotor-type compound helicopter.</p>","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"77 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Improvement of Winged Compound Helicopter Due to Differential Flap Deflections\",\"authors\":\"Hideaki Sugawara, Yasutada Tanabe, Masaharu Kameda\",\"doi\":\"10.2514/1.c037307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A lift-offset system for a single-rotor-type compound helicopter is proposed to improve the aerodynamic performance in high-speed flight. The proposed system utilizes the differential flap deflections on the fixed wings to produce a rolling moment, which is counteracted by the single main rotor, causing the rotor to operate in a lift-offset state. The performance of the proposed system is evaluated through numerical simulations. At first, the effect of lift offset with regard to lift-share ratio on the rotor performance is investigated. Then, the impact of lift offset due to the differential flaps on the overall effective lift-to-drag ratio is studied. The results show that the lift offset significantly improves the rotor performance and the overall effective lift-to-drag ratios, especially at larger rotor lift-share ratios. The overall effective lift-to-drag ratio increases by 10% due to the differential flaps compared to the zero-flap deflections. It is concluded that the lift offset due to the differential flaps achieves more efficient cruising flight for a single-rotor-type compound helicopter.</p>\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037307\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037307","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种单旋翼复合直升机升力偏置系统,以改善高速飞行时的气动性能。该系统利用固定翼上的襟翼偏转差产生滚动力矩,由单旋翼主旋翼抵消,使旋翼处于升力偏移状态。通过数值模拟评估了拟议系统的性能。首先,研究了升力偏移与升力共享比对转子性能的影响。然后,研究了差动襟翼导致的升力偏移对整体有效升阻比的影响。结果表明,升力偏移显著改善了转子性能和整体有效升阻比,尤其是在转子升力共享比较大的情况下。与零襟翼偏转相比,差动襟翼使整体有效升阻比提高了 10%。结论是,差动襟翼导致的升力偏移可使单旋翼复合直升机实现更高效的巡航飞行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Improvement of Winged Compound Helicopter Due to Differential Flap Deflections

A lift-offset system for a single-rotor-type compound helicopter is proposed to improve the aerodynamic performance in high-speed flight. The proposed system utilizes the differential flap deflections on the fixed wings to produce a rolling moment, which is counteracted by the single main rotor, causing the rotor to operate in a lift-offset state. The performance of the proposed system is evaluated through numerical simulations. At first, the effect of lift offset with regard to lift-share ratio on the rotor performance is investigated. Then, the impact of lift offset due to the differential flaps on the overall effective lift-to-drag ratio is studied. The results show that the lift offset significantly improves the rotor performance and the overall effective lift-to-drag ratios, especially at larger rotor lift-share ratios. The overall effective lift-to-drag ratio increases by 10% due to the differential flaps compared to the zero-flap deflections. It is concluded that the lift offset due to the differential flaps achieves more efficient cruising flight for a single-rotor-type compound helicopter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
期刊最新文献
Experimental Study on a Liquid Hydrogen Tank for Unmanned Aerial Vehicle Applications Numerical Study of Skipping Motion of Blended-Wing–Body Aircraft Ditching on Calm/Wavy Water Blended-Wing-Body Regional Aircraft Optimization with High-Fidelity Aerodynamics and Critical Design Requirements Towards Wall-Resolved Large-Eddy Simulation of the High-Lift Common Research Model Investigation of Hybrid Laminar Flow Control Capabilities from the Flight Envelope Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1