CAMEL.II.基于深度学习的日冕物质抛射自动检测的三维日冕物质抛射目录

Jiahui Shan, Huapeng Zhang, Lei Lu, Yan Zhang, Li Feng, Yunyi Ge, Jianchao Xue, Shuting Li
{"title":"CAMEL.II.基于深度学习的日冕物质抛射自动检测的三维日冕物质抛射目录","authors":"Jiahui Shan, Huapeng Zhang, Lei Lu, Yan Zhang, Li Feng, Yunyi Ge, Jianchao Xue, Shuting Li","doi":"10.3847/1538-4365/ad37bc","DOIUrl":null,"url":null,"abstract":"Coronal mass ejections (CMEs) are major drivers of geomagnetic storms, which may cause severe space weather effects. Automating the detection, tracking, and three-dimensional (3D) reconstruction of CMEs is important for operational predictions of CME arrivals. The COR1 coronagraphs on board the Solar Terrestrial Relations Observatory spacecraft have facilitated extensive polarization observations, which are very suitable for the establishment of a 3D CME system. We have developed such a 3D system comprising four modules: classification, segmentation, tracking, and 3D reconstructions. We generalize our previously pretrained classification model to classify COR1 coronagraph images. Subsequently, as there are no publicly available CME segmentation data sets, we manually annotate the structural regions of CMEs using Large Angle and Spectrometric Coronagraph C2 observations. Leveraging transformer-based models, we achieve state-of-the-art results in CME segmentation. Furthermore, we improve the tracking algorithm to solve the difficult separation task of multiple CMEs. In the final module, tracking results, combined with the polarization ratio technique, are used to develop the first single-view 3D CME catalog without requiring manual mask annotation. Our method provides higher precision in automatic 2D CME catalog and more reliable physical parameters of CMEs, including 3D propagation direction and speed. The aforementioned 3D CME system can be applied to any coronagraph data with the capability of polarization measurements.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAMEL. II. A 3D Coronal Mass Ejection Catalog Based on Coronal Mass Ejection Automatic Detection with Deep Learning\",\"authors\":\"Jiahui Shan, Huapeng Zhang, Lei Lu, Yan Zhang, Li Feng, Yunyi Ge, Jianchao Xue, Shuting Li\",\"doi\":\"10.3847/1538-4365/ad37bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronal mass ejections (CMEs) are major drivers of geomagnetic storms, which may cause severe space weather effects. Automating the detection, tracking, and three-dimensional (3D) reconstruction of CMEs is important for operational predictions of CME arrivals. The COR1 coronagraphs on board the Solar Terrestrial Relations Observatory spacecraft have facilitated extensive polarization observations, which are very suitable for the establishment of a 3D CME system. We have developed such a 3D system comprising four modules: classification, segmentation, tracking, and 3D reconstructions. We generalize our previously pretrained classification model to classify COR1 coronagraph images. Subsequently, as there are no publicly available CME segmentation data sets, we manually annotate the structural regions of CMEs using Large Angle and Spectrometric Coronagraph C2 observations. Leveraging transformer-based models, we achieve state-of-the-art results in CME segmentation. Furthermore, we improve the tracking algorithm to solve the difficult separation task of multiple CMEs. In the final module, tracking results, combined with the polarization ratio technique, are used to develop the first single-view 3D CME catalog without requiring manual mask annotation. Our method provides higher precision in automatic 2D CME catalog and more reliable physical parameters of CMEs, including 3D propagation direction and speed. The aforementioned 3D CME system can be applied to any coronagraph data with the capability of polarization measurements.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad37bc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad37bc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

日冕物质抛射(CMEs)是地磁暴的主要驱动因素,可能造成严重的空间天气影响。日冕物质抛射的自动探测、跟踪和三维(3D)重建对于日冕物质抛射到达的运行预测非常重要。日地关系观测站航天器上的 COR1 日冕仪促进了广泛的偏振观测,非常适合建立一个三维 CME 系统。我们开发了这样一个三维系统,包括四个模块:分类、分割、跟踪和三维重建。我们将先前预训练的分类模型推广到 COR1 日冕仪图像的分类中。随后,由于没有公开的CME分割数据集,我们利用大角度和光谱日冕仪C2观测数据手动标注CME的结构区域。利用基于变换器的模型,我们在 CME 分割方面取得了最先进的结果。此外,我们还改进了跟踪算法,以解决多个 CME 难以分离的问题。在最后一个模块中,我们将跟踪结果与偏振比技术相结合,开发出首个单视角三维 CME 目录,而无需人工进行掩膜注释。我们的方法为自动二维 CME 编目提供了更高的精度和更可靠的 CME 物理参数,包括三维传播方向和速度。上述三维 CME 系统可应用于任何具有偏振测量能力的日冕仪数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAMEL. II. A 3D Coronal Mass Ejection Catalog Based on Coronal Mass Ejection Automatic Detection with Deep Learning
Coronal mass ejections (CMEs) are major drivers of geomagnetic storms, which may cause severe space weather effects. Automating the detection, tracking, and three-dimensional (3D) reconstruction of CMEs is important for operational predictions of CME arrivals. The COR1 coronagraphs on board the Solar Terrestrial Relations Observatory spacecraft have facilitated extensive polarization observations, which are very suitable for the establishment of a 3D CME system. We have developed such a 3D system comprising four modules: classification, segmentation, tracking, and 3D reconstructions. We generalize our previously pretrained classification model to classify COR1 coronagraph images. Subsequently, as there are no publicly available CME segmentation data sets, we manually annotate the structural regions of CMEs using Large Angle and Spectrometric Coronagraph C2 observations. Leveraging transformer-based models, we achieve state-of-the-art results in CME segmentation. Furthermore, we improve the tracking algorithm to solve the difficult separation task of multiple CMEs. In the final module, tracking results, combined with the polarization ratio technique, are used to develop the first single-view 3D CME catalog without requiring manual mask annotation. Our method provides higher precision in automatic 2D CME catalog and more reliable physical parameters of CMEs, including 3D propagation direction and speed. The aforementioned 3D CME system can be applied to any coronagraph data with the capability of polarization measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1