{"title":"基于参数在线识别的高超音速飞行器数据驱动反步态控制","authors":"Shihong Su, Bing Xiao, Lingwei Li, Jingfeng Luo","doi":"10.1002/acs.3829","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The control problem of the hypersonic vehicles is studied in this article. A new control approach is presented. This approach consists of a data-driven dynamic model established by multiple neural networks, an online identification method for system parameters, and a basic backstepping controller. The implementation of this approach requires a dynamic model and system parameters including the moment of inertia and aerodynamic parameters of the hypersonic vehicles. The parameter identification problem is regarded as a dynamic optimization process. The loss function is designed by the Lagrange criterion, and its constraints are determined by the physical and the numerical values. In the case of model mutation, the system parameters identified online are used as the nominal values of the output of the neural network in the data-driven model to adjust the controller through its gradient descent. Simulation comparisons are given to show the effectiveness of the proposed data-driven approach.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2771-2789"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters online identification-based data-driven backstepping control of hypersonic vehicles\",\"authors\":\"Shihong Su, Bing Xiao, Lingwei Li, Jingfeng Luo\",\"doi\":\"10.1002/acs.3829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The control problem of the hypersonic vehicles is studied in this article. A new control approach is presented. This approach consists of a data-driven dynamic model established by multiple neural networks, an online identification method for system parameters, and a basic backstepping controller. The implementation of this approach requires a dynamic model and system parameters including the moment of inertia and aerodynamic parameters of the hypersonic vehicles. The parameter identification problem is regarded as a dynamic optimization process. The loss function is designed by the Lagrange criterion, and its constraints are determined by the physical and the numerical values. In the case of model mutation, the system parameters identified online are used as the nominal values of the output of the neural network in the data-driven model to adjust the controller through its gradient descent. Simulation comparisons are given to show the effectiveness of the proposed data-driven approach.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 8\",\"pages\":\"2771-2789\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3829\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3829","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Parameters online identification-based data-driven backstepping control of hypersonic vehicles
The control problem of the hypersonic vehicles is studied in this article. A new control approach is presented. This approach consists of a data-driven dynamic model established by multiple neural networks, an online identification method for system parameters, and a basic backstepping controller. The implementation of this approach requires a dynamic model and system parameters including the moment of inertia and aerodynamic parameters of the hypersonic vehicles. The parameter identification problem is regarded as a dynamic optimization process. The loss function is designed by the Lagrange criterion, and its constraints are determined by the physical and the numerical values. In the case of model mutation, the system parameters identified online are used as the nominal values of the output of the neural network in the data-driven model to adjust the controller through its gradient descent. Simulation comparisons are given to show the effectiveness of the proposed data-driven approach.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.