Xinyi Yu, Jiaqi Yu, Yongqi Zhang, Jiaxin Wu, Yan Wei, Linlin Ou
{"title":"基于数据驱动的低计算成本优化输出反馈控制","authors":"Xinyi Yu, Jiaqi Yu, Yongqi Zhang, Jiaxin Wu, Yan Wei, Linlin Ou","doi":"10.1002/acs.3832","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A partial model-free, data-driven adaptive optimal output feedback (OPFB) control scheme with low computational cost continuous-time is proposed in this paper. The design objective is to obtain the optimal control law by using measurable input and output data, without some knowledge of system model information. Firstly, the system states are decoupled into measurable and unmeasurable parts, and a new state-space equation is built to estimate the unmeasurable states by using a reduced-order observer. Based on this, a parametrization method is utilized to reconstruct the system states. Subsequently, by using the reconstructed states, the adaptive dynamic programming (ADP) Bellman equations based on policy-iteration (PI) and value-iteration (VI) are presented to solve the control problems with initially stable and unstable conditions, respectively. Then, the convergence of the system is proved. Compared with the early proposed OPFB algorithms, only the unknown internal state needs to be reconstructed. Therefore, the computation cost and design complexity are reduced for the proposed scheme. The effectiveness of the proposed scheme is verified through two numerical simulations. In addition, a practical inverted pendulum experiment is carried out to demonstrate the performance of the proposed scheme.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2790-2809"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven based optimal output feedback control with low computation cost\",\"authors\":\"Xinyi Yu, Jiaqi Yu, Yongqi Zhang, Jiaxin Wu, Yan Wei, Linlin Ou\",\"doi\":\"10.1002/acs.3832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A partial model-free, data-driven adaptive optimal output feedback (OPFB) control scheme with low computational cost continuous-time is proposed in this paper. The design objective is to obtain the optimal control law by using measurable input and output data, without some knowledge of system model information. Firstly, the system states are decoupled into measurable and unmeasurable parts, and a new state-space equation is built to estimate the unmeasurable states by using a reduced-order observer. Based on this, a parametrization method is utilized to reconstruct the system states. Subsequently, by using the reconstructed states, the adaptive dynamic programming (ADP) Bellman equations based on policy-iteration (PI) and value-iteration (VI) are presented to solve the control problems with initially stable and unstable conditions, respectively. Then, the convergence of the system is proved. Compared with the early proposed OPFB algorithms, only the unknown internal state needs to be reconstructed. Therefore, the computation cost and design complexity are reduced for the proposed scheme. The effectiveness of the proposed scheme is verified through two numerical simulations. In addition, a practical inverted pendulum experiment is carried out to demonstrate the performance of the proposed scheme.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 8\",\"pages\":\"2790-2809\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3832\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3832","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Data-driven based optimal output feedback control with low computation cost
A partial model-free, data-driven adaptive optimal output feedback (OPFB) control scheme with low computational cost continuous-time is proposed in this paper. The design objective is to obtain the optimal control law by using measurable input and output data, without some knowledge of system model information. Firstly, the system states are decoupled into measurable and unmeasurable parts, and a new state-space equation is built to estimate the unmeasurable states by using a reduced-order observer. Based on this, a parametrization method is utilized to reconstruct the system states. Subsequently, by using the reconstructed states, the adaptive dynamic programming (ADP) Bellman equations based on policy-iteration (PI) and value-iteration (VI) are presented to solve the control problems with initially stable and unstable conditions, respectively. Then, the convergence of the system is proved. Compared with the early proposed OPFB algorithms, only the unknown internal state needs to be reconstructed. Therefore, the computation cost and design complexity are reduced for the proposed scheme. The effectiveness of the proposed scheme is verified through two numerical simulations. In addition, a practical inverted pendulum experiment is carried out to demonstrate the performance of the proposed scheme.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.