利用连续扰动生成实现可持续对抗训练

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-05-10 DOI:10.1631/fitee.2300474
Wei Lin, Lichuan Liao
{"title":"利用连续扰动生成实现可持续对抗训练","authors":"Wei Lin, Lichuan Liao","doi":"10.1631/fitee.2300474","DOIUrl":null,"url":null,"abstract":"<p>Adversarial training with online-generated adversarial examples has achieved promising performance in defending adversarial attacks and improving robustness of convolutional neural network models. However, most existing adversarial training methods are dedicated to finding strong adversarial examples for forcing the model to learn the adversarial data distribution, which inevitably imposes a large computational overhead and results in a decrease in the generalization performance on clean data. In this paper, we show that progressively enhancing the adversarial strength of adversarial examples across training epochs can effectively improve the model robustness, and appropriate model shifting can preserve the generalization performance of models in conjunction with negligible computational cost. To this end, we propose a successive perturbation generation scheme for adversarial training (SPGAT), which progressively strengthens the adversarial examples by adding the perturbations on adversarial examples transferred from the previous epoch and shifts models across the epochs to improve the efficiency of adversarial training. The proposed SPGAT is both efficient and effective; e.g., the computation time of our method is 900 min as against the 4100 min duration observed in the case of standard adversarial training, and the performance boost is more than 7% and 3% in terms of adversarial accuracy and clean accuracy, respectively. We extensively evaluate the SPGAT on various datasets, including small-scale MNIST, middle-scale CIFAR-10, and large-scale CIFAR-100. The experimental results show that our method is more efficient while performing favorably against state-of-the-art methods.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"59 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards sustainable adversarial training with successive perturbation generation\",\"authors\":\"Wei Lin, Lichuan Liao\",\"doi\":\"10.1631/fitee.2300474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adversarial training with online-generated adversarial examples has achieved promising performance in defending adversarial attacks and improving robustness of convolutional neural network models. However, most existing adversarial training methods are dedicated to finding strong adversarial examples for forcing the model to learn the adversarial data distribution, which inevitably imposes a large computational overhead and results in a decrease in the generalization performance on clean data. In this paper, we show that progressively enhancing the adversarial strength of adversarial examples across training epochs can effectively improve the model robustness, and appropriate model shifting can preserve the generalization performance of models in conjunction with negligible computational cost. To this end, we propose a successive perturbation generation scheme for adversarial training (SPGAT), which progressively strengthens the adversarial examples by adding the perturbations on adversarial examples transferred from the previous epoch and shifts models across the epochs to improve the efficiency of adversarial training. The proposed SPGAT is both efficient and effective; e.g., the computation time of our method is 900 min as against the 4100 min duration observed in the case of standard adversarial training, and the performance boost is more than 7% and 3% in terms of adversarial accuracy and clean accuracy, respectively. We extensively evaluate the SPGAT on various datasets, including small-scale MNIST, middle-scale CIFAR-10, and large-scale CIFAR-100. The experimental results show that our method is more efficient while performing favorably against state-of-the-art methods.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300474\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300474","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用在线生成的对抗示例进行对抗训练,在防御对抗攻击和提高卷积神经网络模型的鲁棒性方面取得了可喜的成绩。然而,现有的对抗训练方法大多致力于寻找强对抗范例,以迫使模型学习对抗数据分布,这不可避免地会带来大量计算开销,并导致模型在干净数据上的泛化性能下降。在本文中,我们证明了在训练历时中逐步增强对抗性示例的对抗强度可以有效提高模型的鲁棒性,而适当的模型转换可以在保持模型泛化性能的同时,使计算成本降低到可以忽略不计的程度。为此,我们提出了一种用于对抗训练的连续扰动生成方案(SPGAT),该方案通过对上一训练时程转移过来的对抗示例添加扰动来逐步增强对抗示例,并在各训练时程之间转移模型,从而提高对抗训练的效率。我们提出的 SPGAT 既高效又有效,例如,我们方法的计算时间为 900 分钟,而标准对抗训练的计算时间为 4100 分钟,在对抗准确率和干净准确率方面的性能提升分别超过 7% 和 3%。我们在各种数据集上广泛评估了 SPGAT,包括小型 MNIST、中型 CIFAR-10 和大型 CIFAR-100。实验结果表明,与最先进的方法相比,我们的方法更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards sustainable adversarial training with successive perturbation generation

Adversarial training with online-generated adversarial examples has achieved promising performance in defending adversarial attacks and improving robustness of convolutional neural network models. However, most existing adversarial training methods are dedicated to finding strong adversarial examples for forcing the model to learn the adversarial data distribution, which inevitably imposes a large computational overhead and results in a decrease in the generalization performance on clean data. In this paper, we show that progressively enhancing the adversarial strength of adversarial examples across training epochs can effectively improve the model robustness, and appropriate model shifting can preserve the generalization performance of models in conjunction with negligible computational cost. To this end, we propose a successive perturbation generation scheme for adversarial training (SPGAT), which progressively strengthens the adversarial examples by adding the perturbations on adversarial examples transferred from the previous epoch and shifts models across the epochs to improve the efficiency of adversarial training. The proposed SPGAT is both efficient and effective; e.g., the computation time of our method is 900 min as against the 4100 min duration observed in the case of standard adversarial training, and the performance boost is more than 7% and 3% in terms of adversarial accuracy and clean accuracy, respectively. We extensively evaluate the SPGAT on various datasets, including small-scale MNIST, middle-scale CIFAR-10, and large-scale CIFAR-100. The experimental results show that our method is more efficient while performing favorably against state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1