{"title":"遥感微型卫星的星载高级存储系统","authors":"Shilei Tu, Huiquan Wang, Yue Huang, Zhonghe Jin","doi":"10.1631/fitee.2200445","DOIUrl":null,"url":null,"abstract":"<p>With the development of satellite miniaturization and remote sensing, the establishment of microsatellite constellations is an inevitable trend. Due to their limited size, weight, and power, spaceborne storage systems with excellent scalability, performance, and reliability are still one of the technical bottlenecks of remote sensing microsatellites. Based on the commercial off-the-shelf field-programmable gate array and memory devices, a spaceborne advanced storage system (SASS) is proposed in this paper. This work provides a dynamic programming, queue scheduling multiple-input multiple-output cache technique and a high-speed, high-reliability NAND flash controller for multiple microsatellite payload data. Experimental results show that SASS has outstanding scalability with a maximum write rate of 2429 Mb/s and preserves at least 78.53% of the performance when a single NAND flash fails. The scheduling technique effectively shortens the data scheduling time, and the data remapping method of the NAND flash controller can reduce the retention error by at least 50.73% and the program disturbance error by at least 37.80%.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"21 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spaceborne advanced storage system for remote sensing microsatellites\",\"authors\":\"Shilei Tu, Huiquan Wang, Yue Huang, Zhonghe Jin\",\"doi\":\"10.1631/fitee.2200445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the development of satellite miniaturization and remote sensing, the establishment of microsatellite constellations is an inevitable trend. Due to their limited size, weight, and power, spaceborne storage systems with excellent scalability, performance, and reliability are still one of the technical bottlenecks of remote sensing microsatellites. Based on the commercial off-the-shelf field-programmable gate array and memory devices, a spaceborne advanced storage system (SASS) is proposed in this paper. This work provides a dynamic programming, queue scheduling multiple-input multiple-output cache technique and a high-speed, high-reliability NAND flash controller for multiple microsatellite payload data. Experimental results show that SASS has outstanding scalability with a maximum write rate of 2429 Mb/s and preserves at least 78.53% of the performance when a single NAND flash fails. The scheduling technique effectively shortens the data scheduling time, and the data remapping method of the NAND flash controller can reduce the retention error by at least 50.73% and the program disturbance error by at least 37.80%.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200445\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200445","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A spaceborne advanced storage system for remote sensing microsatellites
With the development of satellite miniaturization and remote sensing, the establishment of microsatellite constellations is an inevitable trend. Due to their limited size, weight, and power, spaceborne storage systems with excellent scalability, performance, and reliability are still one of the technical bottlenecks of remote sensing microsatellites. Based on the commercial off-the-shelf field-programmable gate array and memory devices, a spaceborne advanced storage system (SASS) is proposed in this paper. This work provides a dynamic programming, queue scheduling multiple-input multiple-output cache technique and a high-speed, high-reliability NAND flash controller for multiple microsatellite payload data. Experimental results show that SASS has outstanding scalability with a maximum write rate of 2429 Mb/s and preserves at least 78.53% of the performance when a single NAND flash fails. The scheduling technique effectively shortens the data scheduling time, and the data remapping method of the NAND flash controller can reduce the retention error by at least 50.73% and the program disturbance error by at least 37.80%.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.