{"title":"基于摄影测量技术的裸露骨料混凝土路面表面纹理平均深度估算","authors":"Lyhour Chhay, Jaehoon Kim, Seung Woo Lee","doi":"10.1007/s40999-024-00975-0","DOIUrl":null,"url":null,"abstract":"<p>The pavement texture wavelength and mean texture depth (MTD) of the pavement macrotexture significantly affect functional performance. However, owing to its higher correlation with the wavelength, the Exposed Aggregate Concrete Pavement (EACP) texture was evaluated based on the MTD and exposed aggregate number (EAN) in the same location. The MTD contributes significantly to road surface friction and tire-pavement noise and is vital for anti-sliding and noise reduction. Conventional methods for MTD measurement require considerable human effort when the sample size is large and sensitive to the operator. Furthermore, it is time-consuming to measure the MTD together with the EAN. Recently, image-based estimation has become a new trend, owing to its economy and convenience. Therefore, this study aimed to estimate the MTD of the EACP pavement surface texture at an image-based level as an alternative measurement approach simultaneously within the EAN location. Initially, the image acquisition was created based on aerial photography. Subsequently, photogrammetry was used to reconstruct a high-resolution point cloud of the pavement texture. Subsequently, the MTD was estimated analytically from image-based point clouds. Experiments were conducted at over 60 locations in three field tests of the EACP in South Korea. The MTD results showed good agreement and a higher correlation between the image-based and sand-patch test (SPT) methods. The image-based method showed results higher than the SPT with a value of 22%. Therefore, the developed method can be used to estimate the MTD using the established regression equation.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"25 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Texture Depth Estimation of Exposed Aggregate Concrete Pavement Surface Texture Based on Photogrammetry Technique\",\"authors\":\"Lyhour Chhay, Jaehoon Kim, Seung Woo Lee\",\"doi\":\"10.1007/s40999-024-00975-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pavement texture wavelength and mean texture depth (MTD) of the pavement macrotexture significantly affect functional performance. However, owing to its higher correlation with the wavelength, the Exposed Aggregate Concrete Pavement (EACP) texture was evaluated based on the MTD and exposed aggregate number (EAN) in the same location. The MTD contributes significantly to road surface friction and tire-pavement noise and is vital for anti-sliding and noise reduction. Conventional methods for MTD measurement require considerable human effort when the sample size is large and sensitive to the operator. Furthermore, it is time-consuming to measure the MTD together with the EAN. Recently, image-based estimation has become a new trend, owing to its economy and convenience. Therefore, this study aimed to estimate the MTD of the EACP pavement surface texture at an image-based level as an alternative measurement approach simultaneously within the EAN location. Initially, the image acquisition was created based on aerial photography. Subsequently, photogrammetry was used to reconstruct a high-resolution point cloud of the pavement texture. Subsequently, the MTD was estimated analytically from image-based point clouds. Experiments were conducted at over 60 locations in three field tests of the EACP in South Korea. The MTD results showed good agreement and a higher correlation between the image-based and sand-patch test (SPT) methods. The image-based method showed results higher than the SPT with a value of 22%. Therefore, the developed method can be used to estimate the MTD using the established regression equation.</p>\",\"PeriodicalId\":50331,\"journal\":{\"name\":\"International Journal of Civil Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40999-024-00975-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00975-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Mean Texture Depth Estimation of Exposed Aggregate Concrete Pavement Surface Texture Based on Photogrammetry Technique
The pavement texture wavelength and mean texture depth (MTD) of the pavement macrotexture significantly affect functional performance. However, owing to its higher correlation with the wavelength, the Exposed Aggregate Concrete Pavement (EACP) texture was evaluated based on the MTD and exposed aggregate number (EAN) in the same location. The MTD contributes significantly to road surface friction and tire-pavement noise and is vital for anti-sliding and noise reduction. Conventional methods for MTD measurement require considerable human effort when the sample size is large and sensitive to the operator. Furthermore, it is time-consuming to measure the MTD together with the EAN. Recently, image-based estimation has become a new trend, owing to its economy and convenience. Therefore, this study aimed to estimate the MTD of the EACP pavement surface texture at an image-based level as an alternative measurement approach simultaneously within the EAN location. Initially, the image acquisition was created based on aerial photography. Subsequently, photogrammetry was used to reconstruct a high-resolution point cloud of the pavement texture. Subsequently, the MTD was estimated analytically from image-based point clouds. Experiments were conducted at over 60 locations in three field tests of the EACP in South Korea. The MTD results showed good agreement and a higher correlation between the image-based and sand-patch test (SPT) methods. The image-based method showed results higher than the SPT with a value of 22%. Therefore, the developed method can be used to estimate the MTD using the established regression equation.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.