Wenbo Zhang, Tao Wang, Chaoyang Zhang, Jingyu Feng
{"title":"确保多链共识免受区块链网络中多样化矿工行为的攻击","authors":"Wenbo Zhang, Tao Wang, Chaoyang Zhang, Jingyu Feng","doi":"10.1631/fitee.2200505","DOIUrl":null,"url":null,"abstract":"<p>As cross-chain technologies enable interactions among different blockchains (hereinafter “chains”), multi-chain consensus is becoming increasingly important in blockchain networks. However, more attention has been paid to single-chain consensus schemes. Multi-chain consensus schemes with trusted miner participation have not been considered, thus offering opportunities for malicious users to launch diverse miner behavior (DMB) attacks on different chains. DMB attackers can be friendly in the consensus process on some chains, called mask chains, to enhance their trust value, while on others, called kill chains, they engage in destructive behaviors on the network. In this paper, we propose a multi-chain consensus scheme named Proof-of-DiscTrust (PoDT) to defend against DMB attacks. The idea of distinctive trust (DiscTrust) is introduced to evaluate the trust value of each user across different chains. The trustworthiness of a user is split into local and global trust values. A dynamic behavior prediction scheme is designed to enforce DiscTrust to prevent an intensive DMB attacker from maintaining strong trust by alternately creating true or false blocks on the kill chain. Three trusted miner selection algorithms for multi-chain environments can be implemented to select network miners, chain miners, and chain miner leaders, separately. Simulation results show that PoDT is secure against DMB attacks and more effective than traditional consensus schemes in multi-chain environments.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"154 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing multi-chain consensus against diverse miner behavior attacks in blockchain networks\",\"authors\":\"Wenbo Zhang, Tao Wang, Chaoyang Zhang, Jingyu Feng\",\"doi\":\"10.1631/fitee.2200505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As cross-chain technologies enable interactions among different blockchains (hereinafter “chains”), multi-chain consensus is becoming increasingly important in blockchain networks. However, more attention has been paid to single-chain consensus schemes. Multi-chain consensus schemes with trusted miner participation have not been considered, thus offering opportunities for malicious users to launch diverse miner behavior (DMB) attacks on different chains. DMB attackers can be friendly in the consensus process on some chains, called mask chains, to enhance their trust value, while on others, called kill chains, they engage in destructive behaviors on the network. In this paper, we propose a multi-chain consensus scheme named Proof-of-DiscTrust (PoDT) to defend against DMB attacks. The idea of distinctive trust (DiscTrust) is introduced to evaluate the trust value of each user across different chains. The trustworthiness of a user is split into local and global trust values. A dynamic behavior prediction scheme is designed to enforce DiscTrust to prevent an intensive DMB attacker from maintaining strong trust by alternately creating true or false blocks on the kill chain. Three trusted miner selection algorithms for multi-chain environments can be implemented to select network miners, chain miners, and chain miner leaders, separately. Simulation results show that PoDT is secure against DMB attacks and more effective than traditional consensus schemes in multi-chain environments.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200505\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200505","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Securing multi-chain consensus against diverse miner behavior attacks in blockchain networks
As cross-chain technologies enable interactions among different blockchains (hereinafter “chains”), multi-chain consensus is becoming increasingly important in blockchain networks. However, more attention has been paid to single-chain consensus schemes. Multi-chain consensus schemes with trusted miner participation have not been considered, thus offering opportunities for malicious users to launch diverse miner behavior (DMB) attacks on different chains. DMB attackers can be friendly in the consensus process on some chains, called mask chains, to enhance their trust value, while on others, called kill chains, they engage in destructive behaviors on the network. In this paper, we propose a multi-chain consensus scheme named Proof-of-DiscTrust (PoDT) to defend against DMB attacks. The idea of distinctive trust (DiscTrust) is introduced to evaluate the trust value of each user across different chains. The trustworthiness of a user is split into local and global trust values. A dynamic behavior prediction scheme is designed to enforce DiscTrust to prevent an intensive DMB attacker from maintaining strong trust by alternately creating true or false blocks on the kill chain. Three trusted miner selection algorithms for multi-chain environments can be implemented to select network miners, chain miners, and chain miner leaders, separately. Simulation results show that PoDT is secure against DMB attacks and more effective than traditional consensus schemes in multi-chain environments.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.