流动诱导应力对阻力的岩石细粒破碎:地质能源应用

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS Geomechanics and Geophysics for Geo-Energy and Geo-Resources Pub Date : 2024-05-11 DOI:10.1007/s40948-024-00804-7
Sara Borazjani, Abolfazl Hashemi, Cuong Nguyen, Grace Loi, Thomas Russell, Nastaran Khazali, Yutong Yang, Bryant Dang-Le, Pavel Bedrikovetsky
{"title":"流动诱导应力对阻力的岩石细粒破碎:地质能源应用","authors":"Sara Borazjani, Abolfazl Hashemi, Cuong Nguyen, Grace Loi, Thomas Russell, Nastaran Khazali, Yutong Yang, Bryant Dang-Le, Pavel Bedrikovetsky","doi":"10.1007/s40948-024-00804-7","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a strength-failure mechanism for colloidal detachment by breakage and permeability decline in reservoir rocks. The current theory for permeability decline due to colloidal detachment, including microscale mobilisation mechanisms, mathematical and laboratory modelling, and upscaling to natural reservoirs, is developed only for <i>detrital particles</i> with detachment that occurs against electrostatic attraction. We establish a theory for detachment of widely spread <i>authigenic particles</i> due to breakage of the particle-rock bonds, by integrating beam theory of particle deformation, failure criteria, and creeping flow. Explicit expressions for stress maxima in the beam yield a graphical technique to determine the failure regime. The core-scale model for fines detachment by breakage has a form of maximum retention concentration of the fines, expressing rock capacity to produce breakable fines. This closes the governing system for authigenic fines transport in rocks. Matching of the lab coreflood data by the analytical model for 1D flow exhibits two-population particle behaviour, attributed to simultaneous detachment and migration of authigenic and detrital fines. High agreement between the laboratory and modelling data for 16 corefloods validates the theory. The work is concluded by geo-energy applications to (i) clay breakage in geological faults, (ii) typical reservoir conditions for kaolinite breakage, (iii) well productivity damage due to authigenic fines migration, and (iv) feasibility of fines breakage in various geo-energy extraction technologies.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"55 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rock fines breakage by flow-induced stresses against drag: geo-energy applications\",\"authors\":\"Sara Borazjani, Abolfazl Hashemi, Cuong Nguyen, Grace Loi, Thomas Russell, Nastaran Khazali, Yutong Yang, Bryant Dang-Le, Pavel Bedrikovetsky\",\"doi\":\"10.1007/s40948-024-00804-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents a strength-failure mechanism for colloidal detachment by breakage and permeability decline in reservoir rocks. The current theory for permeability decline due to colloidal detachment, including microscale mobilisation mechanisms, mathematical and laboratory modelling, and upscaling to natural reservoirs, is developed only for <i>detrital particles</i> with detachment that occurs against electrostatic attraction. We establish a theory for detachment of widely spread <i>authigenic particles</i> due to breakage of the particle-rock bonds, by integrating beam theory of particle deformation, failure criteria, and creeping flow. Explicit expressions for stress maxima in the beam yield a graphical technique to determine the failure regime. The core-scale model for fines detachment by breakage has a form of maximum retention concentration of the fines, expressing rock capacity to produce breakable fines. This closes the governing system for authigenic fines transport in rocks. Matching of the lab coreflood data by the analytical model for 1D flow exhibits two-population particle behaviour, attributed to simultaneous detachment and migration of authigenic and detrital fines. High agreement between the laboratory and modelling data for 16 corefloods validates the theory. The work is concluded by geo-energy applications to (i) clay breakage in geological faults, (ii) typical reservoir conditions for kaolinite breakage, (iii) well productivity damage due to authigenic fines migration, and (iv) feasibility of fines breakage in various geo-energy extraction technologies.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00804-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00804-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了储层岩石中胶体破碎脱落和渗透率下降的强度-失效机制。目前关于胶体脱落导致渗透率下降的理论,包括微尺度动员机制、数学和实验室建模,以及上升到天然储层的理论,仅针对在静电吸引下发生脱落的脱落颗粒。我们通过整合颗粒变形的梁理论、失效标准和蠕动流,建立了广泛分布的自生颗粒因颗粒-岩石键断裂而脱离的理论。梁中应力最大值的明确表达式产生了一种确定破坏机制的图形技术。岩心尺度的细粒破碎脱落模型具有细粒最大保留浓度的形式,表达了岩石产生可破碎细粒的能力。这就关闭了岩石中自生细粒输运的调控系统。一维流动分析模型与实验室岩心充注数据的匹配显示了双群颗粒行为,这归因于自生细粒和碎屑的同时脱落和迁移。16 次岩心充水的实验室数据与模型数据之间的高度一致验证了这一理论。最后,将地质能源应用于(i)地质断层中的粘土破碎,(ii)高岭石破碎的典型储层条件,(iii)自生细粒迁移对油井生产力的破坏,以及(iv)各种地质能源开采技术中细粒破碎的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rock fines breakage by flow-induced stresses against drag: geo-energy applications

The paper presents a strength-failure mechanism for colloidal detachment by breakage and permeability decline in reservoir rocks. The current theory for permeability decline due to colloidal detachment, including microscale mobilisation mechanisms, mathematical and laboratory modelling, and upscaling to natural reservoirs, is developed only for detrital particles with detachment that occurs against electrostatic attraction. We establish a theory for detachment of widely spread authigenic particles due to breakage of the particle-rock bonds, by integrating beam theory of particle deformation, failure criteria, and creeping flow. Explicit expressions for stress maxima in the beam yield a graphical technique to determine the failure regime. The core-scale model for fines detachment by breakage has a form of maximum retention concentration of the fines, expressing rock capacity to produce breakable fines. This closes the governing system for authigenic fines transport in rocks. Matching of the lab coreflood data by the analytical model for 1D flow exhibits two-population particle behaviour, attributed to simultaneous detachment and migration of authigenic and detrital fines. High agreement between the laboratory and modelling data for 16 corefloods validates the theory. The work is concluded by geo-energy applications to (i) clay breakage in geological faults, (ii) typical reservoir conditions for kaolinite breakage, (iii) well productivity damage due to authigenic fines migration, and (iv) feasibility of fines breakage in various geo-energy extraction technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
期刊最新文献
Numerical analysis of the influence of quartz crystal anisotropy on the thermal–mechanical coupling behavior of monomineral quartzite Failure analysis of Nehbandan granite under various stress states and strain rates using a calibrated Riedel–Hiermaier–Thoma constitutive model Fracture propagation characteristics of layered shale oil reservoirs with dense laminas under cyclic pressure shock fracturing Numerical simulation of hydraulic fracture propagation from recompletion in refracturing with dynamic stress modeling Criterion for hydraulic fracture propagation behaviour at coal measure composite reservoir interface based on energy release rate theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1