Tapas Kumer Hore, C. H. Balachiranjeevi, Mary Ann Inabangan-Asilo, C. A. Deepak, Alvin D. Palanog, Jose E. Hernandez, Glenn B. Gregorio, Teresita U. Dalisay, Maria Genaleen Q. Diaz, Roberto Fritsche Neto, Md. Abdul Kader, Partha Sarathi Biswas, B. P. Mallikarjuna Swamy
{"title":"澳大利亚水稻群体谷物锌含量和产量的基因组预测和 QTL 分析","authors":"Tapas Kumer Hore, C. H. Balachiranjeevi, Mary Ann Inabangan-Asilo, C. A. Deepak, Alvin D. Palanog, Jose E. Hernandez, Glenn B. Gregorio, Teresita U. Dalisay, Maria Genaleen Q. Diaz, Roberto Fritsche Neto, Md. Abdul Kader, Partha Sarathi Biswas, B. P. Mallikarjuna Swamy","doi":"10.1007/s13562-024-00886-0","DOIUrl":null,"url":null,"abstract":"<p>Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (<i>qPN</i><sub><i>4.1</i></sub>) to 31.7% (<i>qPH</i><sub><i>1.1</i></sub>). <i>qDF</i><sub><i>1.1</i></sub>, <i>qDF</i><sub><i>7.2</i></sub>, <i>qDF</i><sub><i>8.1</i></sub>, <i>qPH</i><sub><i>1.1</i></sub>, <i>qPH</i><sub><i>7.1</i></sub>, <i>qPL</i><sub><i>1.2</i></sub>, <i>qPL</i><sub><i>9.1,</i></sub><i> qZn</i><sub><i>5.1</i></sub>, <i>qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>6.1</i></sub> and <i>qZn</i><sub><i>7.1</i></sub> were identified in both dry and wet seasons; <i>qZn</i><sub><i>5.1</i></sub><i>, qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>5.3,</i></sub><i> qZn</i><sub><i>6.2,</i></sub><i> qZn</i><sub><i>7.1</i></sub> and <i>qYLD</i><sub><i>1.2</i></sub> were detected by both ICIM and association mapping. <i>qZn</i><sub><i>7.1</i></sub> had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. <i>qZn</i><sub><i>6.2</i></sub> was co-located with a gene (<i>OsHMA2</i>) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.</p>","PeriodicalId":16835,"journal":{"name":"Journal of Plant Biochemistry and Biotechnology","volume":"37 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations\",\"authors\":\"Tapas Kumer Hore, C. H. Balachiranjeevi, Mary Ann Inabangan-Asilo, C. A. Deepak, Alvin D. Palanog, Jose E. Hernandez, Glenn B. Gregorio, Teresita U. Dalisay, Maria Genaleen Q. Diaz, Roberto Fritsche Neto, Md. Abdul Kader, Partha Sarathi Biswas, B. P. Mallikarjuna Swamy\",\"doi\":\"10.1007/s13562-024-00886-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (<i>qPN</i><sub><i>4.1</i></sub>) to 31.7% (<i>qPH</i><sub><i>1.1</i></sub>). <i>qDF</i><sub><i>1.1</i></sub>, <i>qDF</i><sub><i>7.2</i></sub>, <i>qDF</i><sub><i>8.1</i></sub>, <i>qPH</i><sub><i>1.1</i></sub>, <i>qPH</i><sub><i>7.1</i></sub>, <i>qPL</i><sub><i>1.2</i></sub>, <i>qPL</i><sub><i>9.1,</i></sub><i> qZn</i><sub><i>5.1</i></sub>, <i>qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>6.1</i></sub> and <i>qZn</i><sub><i>7.1</i></sub> were identified in both dry and wet seasons; <i>qZn</i><sub><i>5.1</i></sub><i>, qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>5.3,</i></sub><i> qZn</i><sub><i>6.2,</i></sub><i> qZn</i><sub><i>7.1</i></sub> and <i>qYLD</i><sub><i>1.2</i></sub> were detected by both ICIM and association mapping. <i>qZn</i><sub><i>7.1</i></sub> had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. <i>qZn</i><sub><i>6.2</i></sub> was co-located with a gene (<i>OsHMA2</i>) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.</p>\",\"PeriodicalId\":16835,\"journal\":{\"name\":\"Journal of Plant Biochemistry and Biotechnology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Biochemistry and Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00886-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry and Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00886-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations
Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (qPN4.1) to 31.7% (qPH1.1). qDF1.1, qDF7.2, qDF8.1, qPH1.1, qPH7.1, qPL1.2, qPL9.1, qZn5.1, qZn5.2, qZn6.1 and qZn7.1 were identified in both dry and wet seasons; qZn5.1, qZn5.2, qZn5.3, qZn6.2, qZn7.1 and qYLD1.2 were detected by both ICIM and association mapping. qZn7.1 had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. qZn6.2 was co-located with a gene (OsHMA2) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.
期刊介绍:
The Journal publishes review articles, research papers, short communications and commentaries in the areas of plant biochemistry, plant molecular biology, microbial and molecular genetics, DNA finger printing, micropropagation, and plant biotechnology including plant genetic engineering, new molecular tools and techniques, genomics & bioinformatics.