对 X17 粒子可能的双峰结构的进一步预测

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Modern Physics Letters A Pub Date : 2024-05-08 DOI:10.1142/s0217732324500573
Hua-Xing Chen
{"title":"对 X17 粒子可能的双峰结构的进一步预测","authors":"Hua-Xing Chen","doi":"10.1142/s0217732324500573","DOIUrl":null,"url":null,"abstract":"<p>The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> particle, discovered by [A. J. Krasznahorkay <i>et al.</i>, <i>Phys. Rev. Lett.</i><b>116</b>, 042501 (2016), doi:10.1103/PhysRevLett.116.042501] at ATOMKI, was recently confirmed in the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mi>γ</mi></math></span><span></span> invariant mass spectra by [K. U. Abraamyan, C. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov and A. S. Sorin, arXiv:2311.18632] at JINR. We notice with surprise and interest that the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> seems to have a double-peak structure. This is in a possible coincidence with our QCD sum rule study of [H.-X. Chen, arXiv:2006.01018], where we interpreted the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> as a tetraquark state composed of four bare quarks (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi><mi>ū</mi><mi>d</mi><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></math></span><span></span>), and claimed that “A unique feature of this tetraquark assignment is that we predict two almost degenerate states with significantly different widths”. These two different tetraquark states are described by two different chiral tetraquark currents <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. To verify whether the tetraquark assignment is correct or not, we replace the up and down quarks by the strange quarks, and apply the QCD sum rule method to study the other four chiral tetraquark currents <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. We calculate their correlation functions, and find that non-perturbative QCD effects do not contribute much to them. Our results suggest that there may exist four almost degenerate tetraquark states with masses about <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>3</mn><mn>6</mn><mo>∼</mo><mn>2</mn><mn>9</mn><mn>6</mn></math></span><span></span> MeV. Each of these states is composed of four bare quarks, either <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi><mi>ū</mi><mi>s</mi><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span> or <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover><mi>s</mi><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span>.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further prediction on the possible double-peak structure of the X17 particle\",\"authors\":\"Hua-Xing Chen\",\"doi\":\"10.1142/s0217732324500573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> particle, discovered by [A. J. Krasznahorkay <i>et al.</i>, <i>Phys. Rev. Lett.</i><b>116</b>, 042501 (2016), doi:10.1103/PhysRevLett.116.042501] at ATOMKI, was recently confirmed in the <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mi>γ</mi></math></span><span></span> invariant mass spectra by [K. U. Abraamyan, C. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov and A. S. Sorin, arXiv:2311.18632] at JINR. We notice with surprise and interest that the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> seems to have a double-peak structure. This is in a possible coincidence with our QCD sum rule study of [H.-X. Chen, arXiv:2006.01018], where we interpreted the <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> as a tetraquark state composed of four bare quarks (<span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>u</mi><mi>ū</mi><mi>d</mi><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></math></span><span></span>), and claimed that “A unique feature of this tetraquark assignment is that we predict two almost degenerate states with significantly different widths”. These two different tetraquark states are described by two different chiral tetraquark currents <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. To verify whether the tetraquark assignment is correct or not, we replace the up and down quarks by the strange quarks, and apply the QCD sum rule method to study the other four chiral tetraquark currents <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\\\"0.35em\\\"></mspace><msub><mrow><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. We calculate their correlation functions, and find that non-perturbative QCD effects do not contribute much to them. Our results suggest that there may exist four almost degenerate tetraquark states with masses about <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mn>3</mn><mn>6</mn><mo>∼</mo><mn>2</mn><mn>9</mn><mn>6</mn></math></span><span></span> MeV. Each of these states is composed of four bare quarks, either <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>u</mi><mi>ū</mi><mi>s</mi><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span> or <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi><mover accent=\\\"true\\\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover><mi>s</mi><mover accent=\\\"true\\\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span>.</p>\",\"PeriodicalId\":18752,\"journal\":{\"name\":\"Modern Physics Letters A\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217732324500573\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732324500573","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由[A. J. Krasznahorkay 等人,Phys.J. Krasznahorkay 等人,Phys. Rev. Lett.116,042501 (2016),doi:10.1103/PhysRevLett.116.042501] 在 ATOMKI 发现的 X17 粒子,最近被 [K. U. Abraamyan、C. Austin、M. I. Baznat、K. K. Gudima、M. A. Kozhin、S. G. G. Baznat、K.U. Abraamyan、C. Austin、M. I. Baznat、K. K. Gudima、M. A. Kozhin、S. G. Reznikov 和 A. S. Sorin, arXiv:2311.18632]在日本核研院证实。我们惊讶并感兴趣地注意到,X17 似乎具有双峰结构。这可能与我们的 QCD 和则研究[H.-X. Chen, arXiv:2006.01018]不谋而合,当时我们把 X17 解释为由四个裸夸克(uūd̄)组成的四夸克态,并声称 "这种四夸克赋值的一个独特特征是,我们预测了两个宽度明显不同的几乎退化的态"。这两种不同的四夸克态由两种不同的手性四夸克电流 ūLγμdLd̄LγμuL 和 ūLγμdLd̄RγμuR 描述。为了验证四夸克的赋值是否正确,我们用奇异夸克来代替上夸克和下夸克、并应用 QCD 和则方法研究另外四种手性四夸克电流 ūLγμsLs̄LγμuL、ūLγμsLs̄RγμuR、d̄LγμsLs̄LγμdL 和 d̄LγμsLs̄RγμdR。我们计算了它们的相关函数,发现非微扰 QCD 效应对它们的贡献不大。我们的结果表明,可能存在质量约为236∼296MeV的四个几乎退化的四夸克态。每个态都由四个裸夸克(uūss̄或 dd̄ss̄)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Further prediction on the possible double-peak structure of the X17 particle

The X17 particle, discovered by [A. J. Krasznahorkay et al., Phys. Rev. Lett.116, 042501 (2016), doi:10.1103/PhysRevLett.116.042501] at ATOMKI, was recently confirmed in the γγ invariant mass spectra by [K. U. Abraamyan, C. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov and A. S. Sorin, arXiv:2311.18632] at JINR. We notice with surprise and interest that the X17 seems to have a double-peak structure. This is in a possible coincidence with our QCD sum rule study of [H.-X. Chen, arXiv:2006.01018], where we interpreted the X17 as a tetraquark state composed of four bare quarks (uūdd̄), and claimed that “A unique feature of this tetraquark assignment is that we predict two almost degenerate states with significantly different widths”. These two different tetraquark states are described by two different chiral tetraquark currents ūLγμdLd̄LγμuL and ūLγμdLd̄RγμuR. To verify whether the tetraquark assignment is correct or not, we replace the up and down quarks by the strange quarks, and apply the QCD sum rule method to study the other four chiral tetraquark currents ūLγμsLs̄LγμuL, ūLγμsLs̄RγμuR, d̄LγμsLs̄LγμdL and d̄LγμsLs̄RγμdR. We calculate their correlation functions, and find that non-perturbative QCD effects do not contribute much to them. Our results suggest that there may exist four almost degenerate tetraquark states with masses about 236296 MeV. Each of these states is composed of four bare quarks, either uūss̄ or dd̄ss̄.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
The effectiveness of selection in a species affects the direction of amino acid frequency evolution. Kaluza–Klein cosmological model with strange-quark-matter in f(R,T) theory of gravity Superluminal geometrodynamics of braneworld hyperdrive via brane–bulk interaction Addendum — Inertia modified by electromagnetic Abelian gauge transformations A review on correlations among the multiplicities of charge particles at SPS, RHIC and LHC energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1