{"title":"用于电化学超级电容器的柔性独立石墨烯封装 PANi@MnO2/ECNFs 纳米结构的合成及其电化学性能","authors":"Chao Pan, Li Dong","doi":"10.1134/S1023193524040086","DOIUrl":null,"url":null,"abstract":"<p>We developeda facile method to construct flexible, freestanding three dimensional hierarchical electrodes that consist of graphene encapsulated one-dimensional conducting polyaniline (PANi)@MnO<sub>2</sub> coaxial nanowires grown on electrospun carbon nanofibers (denoted as G-PANi@MnO<sub>2</sub>/ECNFs). A combination of XRD, SEM, and TEM techniques were used to characterize the structures of G‑PANi@MnO<sub>2</sub>/ECNFs. Electrochemical measurements confirmed that such nanostructured composites possessed higher electrochemical capacitance than that of each individual component due to synergistic effects. The G-PANi@MnO<sub>2</sub>/ECNFs electrode exhibited extremely high specific capacitance (1364.3 F/g at 0.3 A/g) and superior cycling stability (89.2% retention rate after 2000 cycles) in a 1 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution. The excellent electrochemical performance of such nanoscale architectured electrodes provides a new route to develop flexible, freestanding, and high-performance supercapacitors.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"290 - 302"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Electrochemical Performance of Flexible and Freestanding Graphene-Encapsulated PANi@MnO2/ECNFs Nanoscale Architectures for Electrochemical Supercapacitors\",\"authors\":\"Chao Pan, Li Dong\",\"doi\":\"10.1134/S1023193524040086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We developeda facile method to construct flexible, freestanding three dimensional hierarchical electrodes that consist of graphene encapsulated one-dimensional conducting polyaniline (PANi)@MnO<sub>2</sub> coaxial nanowires grown on electrospun carbon nanofibers (denoted as G-PANi@MnO<sub>2</sub>/ECNFs). A combination of XRD, SEM, and TEM techniques were used to characterize the structures of G‑PANi@MnO<sub>2</sub>/ECNFs. Electrochemical measurements confirmed that such nanostructured composites possessed higher electrochemical capacitance than that of each individual component due to synergistic effects. The G-PANi@MnO<sub>2</sub>/ECNFs electrode exhibited extremely high specific capacitance (1364.3 F/g at 0.3 A/g) and superior cycling stability (89.2% retention rate after 2000 cycles) in a 1 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution. The excellent electrochemical performance of such nanoscale architectured electrodes provides a new route to develop flexible, freestanding, and high-performance supercapacitors.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"60 4\",\"pages\":\"290 - 302\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1023193524040086\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524040086","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synthesis and Electrochemical Performance of Flexible and Freestanding Graphene-Encapsulated PANi@MnO2/ECNFs Nanoscale Architectures for Electrochemical Supercapacitors
We developeda facile method to construct flexible, freestanding three dimensional hierarchical electrodes that consist of graphene encapsulated one-dimensional conducting polyaniline (PANi)@MnO2 coaxial nanowires grown on electrospun carbon nanofibers (denoted as G-PANi@MnO2/ECNFs). A combination of XRD, SEM, and TEM techniques were used to characterize the structures of G‑PANi@MnO2/ECNFs. Electrochemical measurements confirmed that such nanostructured composites possessed higher electrochemical capacitance than that of each individual component due to synergistic effects. The G-PANi@MnO2/ECNFs electrode exhibited extremely high specific capacitance (1364.3 F/g at 0.3 A/g) and superior cycling stability (89.2% retention rate after 2000 cycles) in a 1 M Na2SO4 aqueous solution. The excellent electrochemical performance of such nanoscale architectured electrodes provides a new route to develop flexible, freestanding, and high-performance supercapacitors.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.