使用 IhpRNA 沉默鞘蛋白基因可提高香蕉苞片花叶病毒在钝茎麝香(AAA)变种中的抗性Grand Naine

IF 1.8 4区 生物学 Q2 PLANT SCIENCES Tropical Plant Biology Pub Date : 2024-05-11 DOI:10.1007/s12042-024-09360-6
Pritam Ramesh Jadhav, Sachin Chandrakant Ekatpure, K. B. Soni, Alex Swapna, R. S. Lekshmi, Yogesh Sahebrao Wagh, R. V. Manju
{"title":"使用 IhpRNA 沉默鞘蛋白基因可提高香蕉苞片花叶病毒在钝茎麝香(AAA)变种中的抗性Grand Naine","authors":"Pritam Ramesh Jadhav, Sachin Chandrakant Ekatpure, K. B. Soni, Alex Swapna, R. S. Lekshmi, Yogesh Sahebrao Wagh, R. V. Manju","doi":"10.1007/s12042-024-09360-6","DOIUrl":null,"url":null,"abstract":"<p>Banana bract mosaic virus (BBrMV), transmitted by aphids, is a major threat to banana cultivation, causing substantial economic losses. This study focuses on the development of BBrMV-resistant lines of banana cv. ‘Grand Naine’ by silencing viral coat protein (CP) gene using RNA interference (RNAi) strategy. To achieve this, an intron hairpin RNA (ihpRNA) construct containing a 326 bp fragment of the CP gene was designed using the pSTARLING vector. Identification of a Dicer substrate within the CP gene facilitated the prediction of small interfering RNAs (siRNAs) through Custom Dicer-Substrate siRNA analysis. The absence of viral silencing suppressors was validated using the VsupPred tool. Cloning of the sense and antisense fragments of the CP gene into the pSTARLING vector, flanking the cre intron, was confirmed through PCR analysis. Subsequently, the <i>NotI</i> fragment comprising the ubiquitin promoter, ubiquitin intron, sense fragment inserts, cre intron, antisense strand insert, and tumour morphology locus (tmL) terminator was transferred to the <i>Agrobacterium tumefaciens</i> binary vector pART27. Embryogenic calli were transformed with the ihpRNA-CP cassette, and regenerated plantlets were screened for complete cassette integration using PCR. Northern hybridization confirmed the production of siRNAs against coat protein mRNA. Upon exposure to virulent aphids carrying BBrMV, the transformed lines exhibited no disease symptoms. Additionally, reverse transcription quantitative PCR (RT-qPCR) demonstrated the absence of BBrMV, with transformed lines resembling healthy, non-inoculated controls both morphologically and in terms of coat protein gene expression. This RNAi-based approach showcases the successful creation of BBrMV-resistant banana lines, presenting a promising strategy for combating the virus's detrimental effects on banana cultivation.</p>","PeriodicalId":54356,"journal":{"name":"Tropical Plant Biology","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silencing of Coat Protein Gene Using IhpRNA Develops Resistance to Banana Bract Mosaic Virus in Musa Acuminata (AAA) cv. Grand Naine\",\"authors\":\"Pritam Ramesh Jadhav, Sachin Chandrakant Ekatpure, K. B. Soni, Alex Swapna, R. S. Lekshmi, Yogesh Sahebrao Wagh, R. V. Manju\",\"doi\":\"10.1007/s12042-024-09360-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Banana bract mosaic virus (BBrMV), transmitted by aphids, is a major threat to banana cultivation, causing substantial economic losses. This study focuses on the development of BBrMV-resistant lines of banana cv. ‘Grand Naine’ by silencing viral coat protein (CP) gene using RNA interference (RNAi) strategy. To achieve this, an intron hairpin RNA (ihpRNA) construct containing a 326 bp fragment of the CP gene was designed using the pSTARLING vector. Identification of a Dicer substrate within the CP gene facilitated the prediction of small interfering RNAs (siRNAs) through Custom Dicer-Substrate siRNA analysis. The absence of viral silencing suppressors was validated using the VsupPred tool. Cloning of the sense and antisense fragments of the CP gene into the pSTARLING vector, flanking the cre intron, was confirmed through PCR analysis. Subsequently, the <i>NotI</i> fragment comprising the ubiquitin promoter, ubiquitin intron, sense fragment inserts, cre intron, antisense strand insert, and tumour morphology locus (tmL) terminator was transferred to the <i>Agrobacterium tumefaciens</i> binary vector pART27. Embryogenic calli were transformed with the ihpRNA-CP cassette, and regenerated plantlets were screened for complete cassette integration using PCR. Northern hybridization confirmed the production of siRNAs against coat protein mRNA. Upon exposure to virulent aphids carrying BBrMV, the transformed lines exhibited no disease symptoms. Additionally, reverse transcription quantitative PCR (RT-qPCR) demonstrated the absence of BBrMV, with transformed lines resembling healthy, non-inoculated controls both morphologically and in terms of coat protein gene expression. This RNAi-based approach showcases the successful creation of BBrMV-resistant banana lines, presenting a promising strategy for combating the virus's detrimental effects on banana cultivation.</p>\",\"PeriodicalId\":54356,\"journal\":{\"name\":\"Tropical Plant Biology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12042-024-09360-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12042-024-09360-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由蚜虫传播的香蕉苞片花叶病毒(BBrMV)是香蕉种植的主要威胁,造成了巨大的经济损失。本研究的重点是利用 RNA 干扰(RNAi)策略沉默病毒衣壳蛋白(CP)基因,培育香蕉品种 "Grand Naine "的 BBrMV 抗性品系。为此,使用 pSTARLING 载体设计了一个内含子发夹 RNA(ihpRNA)构建体,其中包含 CP 基因的 326 bp 片段。CP 基因中 Dicer 底物的鉴定有助于通过定制 Dicer 底物 siRNA 分析预测小干扰 RNA(siRNA)。使用 VsupPred 工具验证了病毒沉默抑制因子的缺失。通过 PCR 分析确认了将 CP 基因的有义和反义片段克隆到 pSTARLING 载体中,侧翼为 cre 内含子。随后,由泛素启动子、泛素内含子、有意义片段插入物、cre 内含子、反义链插入物和肿瘤形态基因座(tmL)终止子组成的 NotI 片段被转入农杆菌双元载体 pART27。用ihpRNA-CP基因盒转化胚胎胼胝体,并用PCR筛选再生的小植株是否完全整合了基因盒。Northern 杂交证实产生了针对外壳蛋白 mRNA 的 siRNA。在接触携带 BBrMV 的烈性蚜虫时,转化品系没有表现出疾病症状。此外,反转录定量 PCR(RT-qPCR)证明没有 BBrMV,转化品系在形态和外壳蛋白基因表达方面都与健康的非接种对照相似。这种基于 RNAi 的方法成功培育出了抗 BBrMV 的香蕉品系,为消除病毒对香蕉种植的有害影响提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silencing of Coat Protein Gene Using IhpRNA Develops Resistance to Banana Bract Mosaic Virus in Musa Acuminata (AAA) cv. Grand Naine

Banana bract mosaic virus (BBrMV), transmitted by aphids, is a major threat to banana cultivation, causing substantial economic losses. This study focuses on the development of BBrMV-resistant lines of banana cv. ‘Grand Naine’ by silencing viral coat protein (CP) gene using RNA interference (RNAi) strategy. To achieve this, an intron hairpin RNA (ihpRNA) construct containing a 326 bp fragment of the CP gene was designed using the pSTARLING vector. Identification of a Dicer substrate within the CP gene facilitated the prediction of small interfering RNAs (siRNAs) through Custom Dicer-Substrate siRNA analysis. The absence of viral silencing suppressors was validated using the VsupPred tool. Cloning of the sense and antisense fragments of the CP gene into the pSTARLING vector, flanking the cre intron, was confirmed through PCR analysis. Subsequently, the NotI fragment comprising the ubiquitin promoter, ubiquitin intron, sense fragment inserts, cre intron, antisense strand insert, and tumour morphology locus (tmL) terminator was transferred to the Agrobacterium tumefaciens binary vector pART27. Embryogenic calli were transformed with the ihpRNA-CP cassette, and regenerated plantlets were screened for complete cassette integration using PCR. Northern hybridization confirmed the production of siRNAs against coat protein mRNA. Upon exposure to virulent aphids carrying BBrMV, the transformed lines exhibited no disease symptoms. Additionally, reverse transcription quantitative PCR (RT-qPCR) demonstrated the absence of BBrMV, with transformed lines resembling healthy, non-inoculated controls both morphologically and in terms of coat protein gene expression. This RNAi-based approach showcases the successful creation of BBrMV-resistant banana lines, presenting a promising strategy for combating the virus's detrimental effects on banana cultivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Plant Biology
Tropical Plant Biology PLANT SCIENCES-
CiteScore
3.70
自引率
0.00%
发文量
15
期刊介绍: Tropical Plant Biology covers the most rapidly advancing aspects of tropical plant biology including physiology, evolution, development, cellular and molecular biology, genetics, genomics, genomic ecology, and molecular breeding. It publishes articles of original research, but it also accepts review articles and publishes occasional special issues focused on a single tropical crop species or breakthrough. Information published in this journal guides effort to increase the productivity and quality of tropical plants and preserve the world’s plant diversity. The journal serves as the primary source of newly published information for researchers and professionals in all of the aforementioned areas of tropical science.
期刊最新文献
Multi-Gene Identification and Pathogenicity Analysis of Sugarcane Pokkah Boeng Disease Pathogens in Yunnan, China Genome-wide Identification and Functional Analysis of RNAi Gene Families in Papaya (Carica papaya L.) RETRACTED ARTICLE: A multi-objective mixed integer linear programming model proposed to optimize a supply chain network for microalgae-based biofuels and co-products: a case study in Iran. Identification of novel marker-trait associations and candidate genes for combined low phosphorus and nitrogen-deficient conditions in rice at seedling stage Comprehensive Analysis of the Aquaporin Genes in Eucalyptus grandis Suggests Potential Targets for Drought Stress Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1