基于并行多尺度特征融合网络的剩余使用寿命预测

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Manufacturing Pub Date : 2024-05-08 DOI:10.1007/s10845-024-02399-y
Yuyan Yin, Jie Tian, Xinfeng Liu
{"title":"基于并行多尺度特征融合网络的剩余使用寿命预测","authors":"Yuyan Yin, Jie Tian, Xinfeng Liu","doi":"10.1007/s10845-024-02399-y","DOIUrl":null,"url":null,"abstract":"<p>In the domain of Predictive Health Management (PHM), the prediction of Remaining Useful Life (RUL) is pivotal for averting machinery malfunctions and curtailing maintenance expenditures. Currently, most RUL prediction methods overlook the correlation between local and global information, which may lead to the loss of important features and, consequently, a subsequent decline in predictive precision. To address these limitations, this study presents a groundbreaking deep learning framework termed the Parallel Multi-Scale Feature Fusion Network (PM2FN). This approach leverages the advantages of different network structures by constructing two distinct feature extractors to capture both global and local information, thereby providing a more comprehensive feature set for RUL prediction. Experimental results on two publicly available datasets and a real-world dataset demonstrate the superiority and effectiveness of our method, offering a promising solution for industrial RUL prediction.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining useful life prediction based on parallel multi-scale feature fusion network\",\"authors\":\"Yuyan Yin, Jie Tian, Xinfeng Liu\",\"doi\":\"10.1007/s10845-024-02399-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the domain of Predictive Health Management (PHM), the prediction of Remaining Useful Life (RUL) is pivotal for averting machinery malfunctions and curtailing maintenance expenditures. Currently, most RUL prediction methods overlook the correlation between local and global information, which may lead to the loss of important features and, consequently, a subsequent decline in predictive precision. To address these limitations, this study presents a groundbreaking deep learning framework termed the Parallel Multi-Scale Feature Fusion Network (PM2FN). This approach leverages the advantages of different network structures by constructing two distinct feature extractors to capture both global and local information, thereby providing a more comprehensive feature set for RUL prediction. Experimental results on two publicly available datasets and a real-world dataset demonstrate the superiority and effectiveness of our method, offering a promising solution for industrial RUL prediction.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02399-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02399-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在预测性健康管理(PHM)领域,剩余使用寿命(RUL)预测对于避免机械故障和减少维护支出至关重要。目前,大多数剩余使用寿命预测方法都忽略了局部信息和全局信息之间的相关性,这可能会导致重要特征的丢失,进而降低预测精度。为了解决这些局限性,本研究提出了一种开创性的深度学习框架,即并行多尺度特征融合网络(PM2FN)。这种方法通过构建两个不同的特征提取器来捕捉全局和局部信息,充分利用了不同网络结构的优势,从而为 RUL 预测提供了更全面的特征集。在两个公开数据集和一个真实世界数据集上的实验结果证明了我们的方法的优越性和有效性,为工业 RUL 预测提供了一个前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remaining useful life prediction based on parallel multi-scale feature fusion network

In the domain of Predictive Health Management (PHM), the prediction of Remaining Useful Life (RUL) is pivotal for averting machinery malfunctions and curtailing maintenance expenditures. Currently, most RUL prediction methods overlook the correlation between local and global information, which may lead to the loss of important features and, consequently, a subsequent decline in predictive precision. To address these limitations, this study presents a groundbreaking deep learning framework termed the Parallel Multi-Scale Feature Fusion Network (PM2FN). This approach leverages the advantages of different network structures by constructing two distinct feature extractors to capture both global and local information, thereby providing a more comprehensive feature set for RUL prediction. Experimental results on two publicly available datasets and a real-world dataset demonstrate the superiority and effectiveness of our method, offering a promising solution for industrial RUL prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Industrial vision inspection using digital twins: bridging CAD models and realistic scenarios Reliability-improved machine learning model using knowledge-embedded learning approach for smart manufacturing Smart scheduling for next generation manufacturing systems: a systematic literature review An overview of traditional and advanced methods to detect part defects in additive manufacturing processes A systematic multi-layer cognitive model for intelligent machine tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1