{"title":"评估热量减缓措施对社区热性能和能源需求的影响:设计净零能耗社区的途径","authors":"Khan Rahmat Ullah, Veljko Prodanovic, Gloria Pignatta, Ana Deletic, Mattheos Santamouris","doi":"10.1007/s12273-024-1140-7","DOIUrl":null,"url":null,"abstract":"<p>In the context of escalating global energy demands, urban areas, specifically the building sector, contribute to the largest energy consumption, with urban overheating exacerbating this issue. Utilizing urban modelling for heat-mitigation and reduction of energy demand is crucial steps towards a sustainable built-environment, complementing onsite energy generation in the design and development of Net-zero Energy (NZE) Settlement, especially in the context of Australian weather conditions. Addressing a significant gap in existing literature, this study offers empirical analysis on the climate and energy efficacy of integrated heat mitigation strategies applied in 14 neighbourhood typologies located in Sydney, Australia. Examining the application of cool materials on roads, pavements, and rooftops, alongside urban vegetation enhancement, the analysis demonstrates scenario effectiveness on heat mitigation that leads to reduce ambient temperature and energy demands along with CO<sub>2</sub> emissions within the neighbourhoods. Considering building arrangement, built-area ratio, building height, and locations, ENVI-met and CitySim are utilized to assess the heat-mitigation and the energy demand of neighbourhoods, respectively. Results indicate that mitigation measures can lead up to a 2.71 °C reduction in ambient temperature and over 25% reduction in Cooling Degree Hours, with a 34.34% reduction in cooling energy demand and overall energy savings of up to 12.49%. In addition, the annual energy-saving yields a CO<sub>2</sub> reduction of approximately 141.12 tonnes, where additional vegetation further amplifies these reductions by enhancing CO<sub>2</sub> absorption. This study showcases the pathway towards achieving NZE goals in climates similar to that of Australia, highlighting significant benefits in heat-mitigation, environmental impact, and energy-savings.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"2014 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of heat mitigation measures on thermal performance and energy demand at the community level: A pathway toward designing net-zero energy communities\",\"authors\":\"Khan Rahmat Ullah, Veljko Prodanovic, Gloria Pignatta, Ana Deletic, Mattheos Santamouris\",\"doi\":\"10.1007/s12273-024-1140-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of escalating global energy demands, urban areas, specifically the building sector, contribute to the largest energy consumption, with urban overheating exacerbating this issue. Utilizing urban modelling for heat-mitigation and reduction of energy demand is crucial steps towards a sustainable built-environment, complementing onsite energy generation in the design and development of Net-zero Energy (NZE) Settlement, especially in the context of Australian weather conditions. Addressing a significant gap in existing literature, this study offers empirical analysis on the climate and energy efficacy of integrated heat mitigation strategies applied in 14 neighbourhood typologies located in Sydney, Australia. Examining the application of cool materials on roads, pavements, and rooftops, alongside urban vegetation enhancement, the analysis demonstrates scenario effectiveness on heat mitigation that leads to reduce ambient temperature and energy demands along with CO<sub>2</sub> emissions within the neighbourhoods. Considering building arrangement, built-area ratio, building height, and locations, ENVI-met and CitySim are utilized to assess the heat-mitigation and the energy demand of neighbourhoods, respectively. Results indicate that mitigation measures can lead up to a 2.71 °C reduction in ambient temperature and over 25% reduction in Cooling Degree Hours, with a 34.34% reduction in cooling energy demand and overall energy savings of up to 12.49%. In addition, the annual energy-saving yields a CO<sub>2</sub> reduction of approximately 141.12 tonnes, where additional vegetation further amplifies these reductions by enhancing CO<sub>2</sub> absorption. This study showcases the pathway towards achieving NZE goals in climates similar to that of Australia, highlighting significant benefits in heat-mitigation, environmental impact, and energy-savings.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-024-1140-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1140-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Assessing the impact of heat mitigation measures on thermal performance and energy demand at the community level: A pathway toward designing net-zero energy communities
In the context of escalating global energy demands, urban areas, specifically the building sector, contribute to the largest energy consumption, with urban overheating exacerbating this issue. Utilizing urban modelling for heat-mitigation and reduction of energy demand is crucial steps towards a sustainable built-environment, complementing onsite energy generation in the design and development of Net-zero Energy (NZE) Settlement, especially in the context of Australian weather conditions. Addressing a significant gap in existing literature, this study offers empirical analysis on the climate and energy efficacy of integrated heat mitigation strategies applied in 14 neighbourhood typologies located in Sydney, Australia. Examining the application of cool materials on roads, pavements, and rooftops, alongside urban vegetation enhancement, the analysis demonstrates scenario effectiveness on heat mitigation that leads to reduce ambient temperature and energy demands along with CO2 emissions within the neighbourhoods. Considering building arrangement, built-area ratio, building height, and locations, ENVI-met and CitySim are utilized to assess the heat-mitigation and the energy demand of neighbourhoods, respectively. Results indicate that mitigation measures can lead up to a 2.71 °C reduction in ambient temperature and over 25% reduction in Cooling Degree Hours, with a 34.34% reduction in cooling energy demand and overall energy savings of up to 12.49%. In addition, the annual energy-saving yields a CO2 reduction of approximately 141.12 tonnes, where additional vegetation further amplifies these reductions by enhancing CO2 absorption. This study showcases the pathway towards achieving NZE goals in climates similar to that of Australia, highlighting significant benefits in heat-mitigation, environmental impact, and energy-savings.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.