{"title":"MSOA:将移动机械手整合为网络物理系统的面向服务的模块化架构","authors":"Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou","doi":"10.1007/s10845-024-02404-4","DOIUrl":null,"url":null,"abstract":"<p>In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"123 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSOA: A modular service-oriented architecture to integrate mobile manipulators as cyber-physical systems\",\"authors\":\"Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou\",\"doi\":\"10.1007/s10845-024-02404-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02404-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02404-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
在第四次工业革命不断发展的背景下,本研究探讨了将网络物理系统(CPS)融入工业制造的问题,尤其侧重于自主移动机械手(MMs)。本文提出了一个将移动机械手嵌入现有生产系统的综合框架,以满足当代制造业对灵活性和适应性的迫切需求。该框架的核心是开发模块化的面向服务架构,其特点是自适应分散。这种方法优先考虑实时互操作性和利用虚拟能力,这对于将 MMs 有效集成为 CPS 至关重要。该框架的设计不仅考虑到 MM 的操作复杂性,还确保它们与现有的生产控制系统无缝对接。艺术与技术学院的平台 4.0 研究生产线演示了该框架的实际应用。欧姆龙公司开发的名为 MoMa 的 MM 被集成到了系统中。这一应用凸显了该框架显著提高生产系统灵活性、自主性和效率的能力。在制造执行系统(MES)的管理下,MoMa 的成功集成体现了该框架根据工业 4.0 原则改造制造流程的潜力。
MSOA: A modular service-oriented architecture to integrate mobile manipulators as cyber-physical systems
In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.