MSOA:将移动机械手整合为网络物理系统的面向服务的模块化架构

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Manufacturing Pub Date : 2024-05-13 DOI:10.1007/s10845-024-02404-4
Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou
{"title":"MSOA:将移动机械手整合为网络物理系统的面向服务的模块化架构","authors":"Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou","doi":"10.1007/s10845-024-02404-4","DOIUrl":null,"url":null,"abstract":"<p>In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"123 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSOA: A modular service-oriented architecture to integrate mobile manipulators as cyber-physical systems\",\"authors\":\"Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, Esma Talhi, Lucas Hof, Aurélien Arnou\",\"doi\":\"10.1007/s10845-024-02404-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02404-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02404-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在第四次工业革命不断发展的背景下,本研究探讨了将网络物理系统(CPS)融入工业制造的问题,尤其侧重于自主移动机械手(MMs)。本文提出了一个将移动机械手嵌入现有生产系统的综合框架,以满足当代制造业对灵活性和适应性的迫切需求。该框架的核心是开发模块化的面向服务架构,其特点是自适应分散。这种方法优先考虑实时互操作性和利用虚拟能力,这对于将 MMs 有效集成为 CPS 至关重要。该框架的设计不仅考虑到 MM 的操作复杂性,还确保它们与现有的生产控制系统无缝对接。艺术与技术学院的平台 4.0 研究生产线演示了该框架的实际应用。欧姆龙公司开发的名为 MoMa 的 MM 被集成到了系统中。这一应用凸显了该框架显著提高生产系统灵活性、自主性和效率的能力。在制造执行系统(MES)的管理下,MoMa 的成功集成体现了该框架根据工业 4.0 原则改造制造流程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSOA: A modular service-oriented architecture to integrate mobile manipulators as cyber-physical systems

In the evolving landscape of the fourth industrial revolution, the integration of cyber-physical systems (CPSs) into industrial manufacturing, particularly focusing on autonomous mobile manipulators (MMs), is examined. A comprehensive framework is proposed for embedding MMs into existing production systems, addressing the burgeoning need for flexibility and adaptability in contemporary manufacturing. At the heart of this framework is the development of a modular service-oriented architecture, characterized by adaptive decentralization. This approach prioritizes real-time interoperability and leverages virtual capabilities, which is crucial for the effective integration of MMs as CPSs. The framework is designed to not only accommodate the operational complexities of MMs but also ensure their seamless alignment with existing production control systems. The practical application of this framework is demonstrated at the Platform 4.0 research production line at Arts et Métiers. An MM named MoMa, developed by OMRON Company, was integrated into the system. This application highlighted the framework’s capacity to significantly enhance the production system's flexibility, autonomy, and efficiency. Managed by the manufacturing execution system (MES), the successful integration of MoMa exemplifies the framework's potential to transform manufacturing processes in alignment with the principles of Industry 4.0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Industrial vision inspection using digital twins: bridging CAD models and realistic scenarios Reliability-improved machine learning model using knowledge-embedded learning approach for smart manufacturing Smart scheduling for next generation manufacturing systems: a systematic literature review An overview of traditional and advanced methods to detect part defects in additive manufacturing processes A systematic multi-layer cognitive model for intelligent machine tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1