Mitsuhisa Baba, Masanori Okazaki, Yuko Itoh, Kazuhide Matsuda, Fuka Tachiyanagi, Koki Toyota
{"title":"东京氮饱和安地斯土壤中铝的动态变化","authors":"Mitsuhisa Baba, Masanori Okazaki, Yuko Itoh, Kazuhide Matsuda, Fuka Tachiyanagi, Koki Toyota","doi":"10.1111/1440-1703.12480","DOIUrl":null,"url":null,"abstract":"The debate over whether forests around the Tokyo metropolitan area are nitrogen (N) saturation persists, as atmospheric N deposition in throughfall has decreased. This decrease is evidenced by a notable decline in samples collected in the 1990s (especially 1991–1992 and 1995). This decline can be attributed to a reduction in nitrogen oxide (NO<jats:sub><jats:italic>x</jats:italic></jats:sub>) emissions from automobiles. The acidity derived from N deposition can increase aluminum (Al) mobility. We conducted a monitoring study from September 2010 to December 2021 to elucidate the effects of decreased N deposition on Al concentrations and flux in a forested Andisol. Throughfall and soil‐percolated water samples were collected under stands of Japanese cedar and Japanese cypress in Hachioji, Tokyo (Field Museum Tamakyuryo). Major inorganic ions were determined by ion chromatography. Total Al concentrations were determined using atomic absorption spectrometry after concentration under acidic conditions. Aluminum and nitrate () concentrations were significantly correlated in the both Japanese cedar and Japanese cypress stands. In the case of the Japanese cedar stand, Al concentrations tended to decrease over time from November 2010 to May 2015. Based on stepwise multiple regression analysis, acid load associated with N transformation ([H<jats:sup>+</jats:sup>]<jats:sub>load</jats:sub>) was chosen as the sole factor affecting Al mobilization in the Japanese cedar stand. Decreased N deposition affects Al dynamics via a decrease in [H<jats:sup>+</jats:sup>]<jats:sub>load</jats:sub>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum dynamics in nitrogen‐saturated Andisols in Tokyo\",\"authors\":\"Mitsuhisa Baba, Masanori Okazaki, Yuko Itoh, Kazuhide Matsuda, Fuka Tachiyanagi, Koki Toyota\",\"doi\":\"10.1111/1440-1703.12480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The debate over whether forests around the Tokyo metropolitan area are nitrogen (N) saturation persists, as atmospheric N deposition in throughfall has decreased. This decrease is evidenced by a notable decline in samples collected in the 1990s (especially 1991–1992 and 1995). This decline can be attributed to a reduction in nitrogen oxide (NO<jats:sub><jats:italic>x</jats:italic></jats:sub>) emissions from automobiles. The acidity derived from N deposition can increase aluminum (Al) mobility. We conducted a monitoring study from September 2010 to December 2021 to elucidate the effects of decreased N deposition on Al concentrations and flux in a forested Andisol. Throughfall and soil‐percolated water samples were collected under stands of Japanese cedar and Japanese cypress in Hachioji, Tokyo (Field Museum Tamakyuryo). Major inorganic ions were determined by ion chromatography. Total Al concentrations were determined using atomic absorption spectrometry after concentration under acidic conditions. Aluminum and nitrate () concentrations were significantly correlated in the both Japanese cedar and Japanese cypress stands. In the case of the Japanese cedar stand, Al concentrations tended to decrease over time from November 2010 to May 2015. Based on stepwise multiple regression analysis, acid load associated with N transformation ([H<jats:sup>+</jats:sup>]<jats:sub>load</jats:sub>) was chosen as the sole factor affecting Al mobilization in the Japanese cedar stand. Decreased N deposition affects Al dynamics via a decrease in [H<jats:sup>+</jats:sup>]<jats:sub>load</jats:sub>.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1440-1703.12480\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1440-1703.12480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aluminum dynamics in nitrogen‐saturated Andisols in Tokyo
The debate over whether forests around the Tokyo metropolitan area are nitrogen (N) saturation persists, as atmospheric N deposition in throughfall has decreased. This decrease is evidenced by a notable decline in samples collected in the 1990s (especially 1991–1992 and 1995). This decline can be attributed to a reduction in nitrogen oxide (NOx) emissions from automobiles. The acidity derived from N deposition can increase aluminum (Al) mobility. We conducted a monitoring study from September 2010 to December 2021 to elucidate the effects of decreased N deposition on Al concentrations and flux in a forested Andisol. Throughfall and soil‐percolated water samples were collected under stands of Japanese cedar and Japanese cypress in Hachioji, Tokyo (Field Museum Tamakyuryo). Major inorganic ions were determined by ion chromatography. Total Al concentrations were determined using atomic absorption spectrometry after concentration under acidic conditions. Aluminum and nitrate () concentrations were significantly correlated in the both Japanese cedar and Japanese cypress stands. In the case of the Japanese cedar stand, Al concentrations tended to decrease over time from November 2010 to May 2015. Based on stepwise multiple regression analysis, acid load associated with N transformation ([H+]load) was chosen as the sole factor affecting Al mobilization in the Japanese cedar stand. Decreased N deposition affects Al dynamics via a decrease in [H+]load.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.