新型延迟葡萄糖-胰岛素肥胖症模型的动态变化

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Bifurcation and Chaos Pub Date : 2024-05-10 DOI:10.1142/s0218127424500706
Chunyan Gao, Fangqi Chen, Pei Yu
{"title":"新型延迟葡萄糖-胰岛素肥胖症模型的动态变化","authors":"Chunyan Gao, Fangqi Chen, Pei Yu","doi":"10.1142/s0218127424500706","DOIUrl":null,"url":null,"abstract":"<p>In this work, a new glucose–insulin model incorporating time delay and obesity is developed to gain insights of its dynamical mechanisms. Through the method of multiple scales, we theoretically demonstrate that time delay can drive the system to yield Hopf bifurcation, thereby producing oscillating solutions that are consistent with the simulation results. Moreover, obesity changes the level of glucose, but cannot induce oscillations. In particular, it is found that under the combined effect of obesity and time delay, obesity delays the appearance of Hopf bifurcation which is induced by time delay. Results show that a low calorie diet can achieve therapeutic effects including reducing blood glucose fluctuations and insulin resistance, which can be used as an adjuvant for the treatment of diabetes. In addition, our results indicate that the delay, together with an optimal rate of model parameters can cause a variety of dynamics and induce glucose oscillations. The result obtained in this paper may help to better understand the obesity, diabetes, and the interaction between glucose and insulin, so that control strategies can be designed to better regulate blood glucose levels and fluctuations and mitigate the occurrence of type-2 diabetes.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a New Delayed Glucose–Insulin Model with Obesity\",\"authors\":\"Chunyan Gao, Fangqi Chen, Pei Yu\",\"doi\":\"10.1142/s0218127424500706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a new glucose–insulin model incorporating time delay and obesity is developed to gain insights of its dynamical mechanisms. Through the method of multiple scales, we theoretically demonstrate that time delay can drive the system to yield Hopf bifurcation, thereby producing oscillating solutions that are consistent with the simulation results. Moreover, obesity changes the level of glucose, but cannot induce oscillations. In particular, it is found that under the combined effect of obesity and time delay, obesity delays the appearance of Hopf bifurcation which is induced by time delay. Results show that a low calorie diet can achieve therapeutic effects including reducing blood glucose fluctuations and insulin resistance, which can be used as an adjuvant for the treatment of diabetes. In addition, our results indicate that the delay, together with an optimal rate of model parameters can cause a variety of dynamics and induce glucose oscillations. The result obtained in this paper may help to better understand the obesity, diabetes, and the interaction between glucose and insulin, so that control strategies can be designed to better regulate blood glucose levels and fluctuations and mitigate the occurrence of type-2 diabetes.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500706\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们建立了一个包含时间延迟和肥胖症的新葡萄糖-胰岛素模型,以深入了解其动力学机制。通过多尺度方法,我们从理论上证明了时间延迟可以驱动系统产生霍普夫分岔,从而产生与模拟结果一致的振荡解。此外,肥胖会改变葡萄糖水平,但不能引起振荡。研究特别发现,在肥胖和时间延迟的共同作用下,肥胖会延迟霍普夫分岔的出现,而时间延迟会诱发霍普夫分岔。结果表明,低热量饮食可以达到治疗效果,包括减少血糖波动和胰岛素抵抗,可作为治疗糖尿病的辅助手段。此外,我们的研究结果表明,延迟加上模型参数的最佳速率可以引起多种动态变化,并诱发葡萄糖振荡。本文获得的结果可能有助于更好地理解肥胖、糖尿病以及葡萄糖和胰岛素之间的相互作用,从而设计出控制策略,更好地调节血糖水平和波动,缓解 2 型糖尿病的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of a New Delayed Glucose–Insulin Model with Obesity

In this work, a new glucose–insulin model incorporating time delay and obesity is developed to gain insights of its dynamical mechanisms. Through the method of multiple scales, we theoretically demonstrate that time delay can drive the system to yield Hopf bifurcation, thereby producing oscillating solutions that are consistent with the simulation results. Moreover, obesity changes the level of glucose, but cannot induce oscillations. In particular, it is found that under the combined effect of obesity and time delay, obesity delays the appearance of Hopf bifurcation which is induced by time delay. Results show that a low calorie diet can achieve therapeutic effects including reducing blood glucose fluctuations and insulin resistance, which can be used as an adjuvant for the treatment of diabetes. In addition, our results indicate that the delay, together with an optimal rate of model parameters can cause a variety of dynamics and induce glucose oscillations. The result obtained in this paper may help to better understand the obesity, diabetes, and the interaction between glucose and insulin, so that control strategies can be designed to better regulate blood glucose levels and fluctuations and mitigate the occurrence of type-2 diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
期刊最新文献
Design of Higher-Dimensional Switching Chaos Generators by Constructing a Closed Hyper-Polyhedron Slow–Fast Dynamics of a Piecewise-Smooth Leslie–Gower Model with Holling Type-I Functional Response and Weak Allee Effect How Does the Fractional Derivative Change the Complexity of the Caputo Standard Fractional Map Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map Global Stabilization of a Bounded Controlled Lorenz System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1