石墨烯谐振陀螺仪设计的不确定性分析

Yang Lu, Zhan-She Guo, Shang-Chun Fan, Tong Shi
{"title":"石墨烯谐振陀螺仪设计的不确定性分析","authors":"Yang Lu, Zhan-She Guo, Shang-Chun Fan, Tong Shi","doi":"10.1007/s00542-024-05659-2","DOIUrl":null,"url":null,"abstract":"<p>With considerably small structure and ultrahigh sensitivity, the graphene resonant gyroscope has been widely used in aviation, aerospace and deep-sea exploration where sensing the extremely weak angular velocity changes is required. However, small difference in the size of graphene resonant gyroscope caused by inherent uncertainties in various processing and material parameters will lead to huge differences in the output results. This will reduce the reliability of graphene resonant gyroscope. Based on the above issues, the uncertainty analysis method is adopted to establish a numerical model on the direct output resonant frequency and sensitivity of the graphene resonant gyroscope, and a random model based on sampling is introduced. The influence of the uncertainty of six input parameters on the graphene resonant frequency and sensitivity output is clarified, and thus the effect degree of the main parameters, which play a key role in the performance of the graphene resonant gyroscope, is obtained. The results show that the length, width and thickness of the graphene resonant beam have greater impacts on the output parameters, which provides theoretical guidance for the graphene resonant gyroscope to adapt to different measurement ranges.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty analysis for design of a graphene resonant gyroscope\",\"authors\":\"Yang Lu, Zhan-She Guo, Shang-Chun Fan, Tong Shi\",\"doi\":\"10.1007/s00542-024-05659-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With considerably small structure and ultrahigh sensitivity, the graphene resonant gyroscope has been widely used in aviation, aerospace and deep-sea exploration where sensing the extremely weak angular velocity changes is required. However, small difference in the size of graphene resonant gyroscope caused by inherent uncertainties in various processing and material parameters will lead to huge differences in the output results. This will reduce the reliability of graphene resonant gyroscope. Based on the above issues, the uncertainty analysis method is adopted to establish a numerical model on the direct output resonant frequency and sensitivity of the graphene resonant gyroscope, and a random model based on sampling is introduced. The influence of the uncertainty of six input parameters on the graphene resonant frequency and sensitivity output is clarified, and thus the effect degree of the main parameters, which play a key role in the performance of the graphene resonant gyroscope, is obtained. The results show that the length, width and thickness of the graphene resonant beam have greater impacts on the output parameters, which provides theoretical guidance for the graphene resonant gyroscope to adapt to different measurement ranges.</p>\",\"PeriodicalId\":18544,\"journal\":{\"name\":\"Microsystem Technologies\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystem Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00542-024-05659-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05659-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯谐振陀螺仪具有相当小的结构和超高灵敏度,已被广泛应用于航空、航天和深海探测等需要感应极微弱角速度变化的领域。然而,由于各种加工和材料参数固有的不确定性,石墨烯谐振陀螺仪尺寸的微小差异会导致输出结果的巨大差异。这将降低石墨烯谐振陀螺仪的可靠性。基于上述问题,采用不确定性分析方法建立了石墨烯谐振陀螺仪直接输出谐振频率和灵敏度的数值模型,并引入了基于采样的随机模型。明确了六个输入参数的不确定性对石墨烯谐振频率和灵敏度输出的影响,从而得到了对石墨烯谐振陀螺仪性能起关键作用的主要参数的影响程度。结果表明,石墨烯谐振梁的长度、宽度和厚度对输出参数的影响较大,这为石墨烯谐振陀螺仪适应不同的测量范围提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty analysis for design of a graphene resonant gyroscope

With considerably small structure and ultrahigh sensitivity, the graphene resonant gyroscope has been widely used in aviation, aerospace and deep-sea exploration where sensing the extremely weak angular velocity changes is required. However, small difference in the size of graphene resonant gyroscope caused by inherent uncertainties in various processing and material parameters will lead to huge differences in the output results. This will reduce the reliability of graphene resonant gyroscope. Based on the above issues, the uncertainty analysis method is adopted to establish a numerical model on the direct output resonant frequency and sensitivity of the graphene resonant gyroscope, and a random model based on sampling is introduced. The influence of the uncertainty of six input parameters on the graphene resonant frequency and sensitivity output is clarified, and thus the effect degree of the main parameters, which play a key role in the performance of the graphene resonant gyroscope, is obtained. The results show that the length, width and thickness of the graphene resonant beam have greater impacts on the output parameters, which provides theoretical guidance for the graphene resonant gyroscope to adapt to different measurement ranges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the initial viscosity and substrate corner geometry on edge beading of photoresist films An investigation on static, vibration and stability analyses of elastically restrained FG porous Timoshenko nanobeams Flexible capacitive humidity sensor based on potassium ion-doped PVA/CAB double-layer sensing film Modelling and optimization of compound lever-based displacement amplifier in a MEMS accelerometer Research on SMA motor modelling and control algorithm for optical image stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1