{"title":"基于改进型最小二乘支持向量机与蝴蝶优化算法的铜价预测","authors":"Jialu Ling, Ziyu Zhong, Helin Wei","doi":"10.1007/s10614-024-10609-1","DOIUrl":null,"url":null,"abstract":"<p>Copper prices are commonly used as indicators of economic development due to the increased operational risks of copper trading companies caused by their fluctuations and the effect on the government's ability to formulate market regulation policies. However, due to the high volatility of copper prices and resulting database discrepancies, traditional models exhibit lower accuracy and limited applicability. In this study, an improved hybrid prediction model based on the Butterfly Optimization Algorithm (BOA) and the Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the BOA is introduced to optimize the hyperparameters of the LSSVM. Then principal component analysis (PCA) is applied to data preprocessing, and the correlations of principal components are used to analyze and select model variables. To compare the forecasting accuracy and generalization ability based on the dataset of copper prices, some models are applied to establish multiple copper-price forecast cases, short-term, medium-term, and long-term. The results indicate that the PCA-BOA-LSSVM model demonstrates the most significant improvement, particularly in long-term forecasting cases. The highest optimization rate for RMSE reach 55.61%. The evaluation metrics of RMSE and MAPE for each case do not exceed 0.5 and 0.1, respectively, while R<sup>2</sup> remains above 0.6. In conclusion, this study provides a high-precision model for short-term, medium-term, and long-term forecasts of copper prices and provides reliable theoretical support for government policy adjustment and market investment.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Price Forecasting Based on Improved Least Squares Support Vector Machine with Butterfly Optimization Algorithm\",\"authors\":\"Jialu Ling, Ziyu Zhong, Helin Wei\",\"doi\":\"10.1007/s10614-024-10609-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copper prices are commonly used as indicators of economic development due to the increased operational risks of copper trading companies caused by their fluctuations and the effect on the government's ability to formulate market regulation policies. However, due to the high volatility of copper prices and resulting database discrepancies, traditional models exhibit lower accuracy and limited applicability. In this study, an improved hybrid prediction model based on the Butterfly Optimization Algorithm (BOA) and the Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the BOA is introduced to optimize the hyperparameters of the LSSVM. Then principal component analysis (PCA) is applied to data preprocessing, and the correlations of principal components are used to analyze and select model variables. To compare the forecasting accuracy and generalization ability based on the dataset of copper prices, some models are applied to establish multiple copper-price forecast cases, short-term, medium-term, and long-term. The results indicate that the PCA-BOA-LSSVM model demonstrates the most significant improvement, particularly in long-term forecasting cases. The highest optimization rate for RMSE reach 55.61%. The evaluation metrics of RMSE and MAPE for each case do not exceed 0.5 and 0.1, respectively, while R<sup>2</sup> remains above 0.6. In conclusion, this study provides a high-precision model for short-term, medium-term, and long-term forecasts of copper prices and provides reliable theoretical support for government policy adjustment and market investment.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10609-1\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10609-1","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Copper Price Forecasting Based on Improved Least Squares Support Vector Machine with Butterfly Optimization Algorithm
Copper prices are commonly used as indicators of economic development due to the increased operational risks of copper trading companies caused by their fluctuations and the effect on the government's ability to formulate market regulation policies. However, due to the high volatility of copper prices and resulting database discrepancies, traditional models exhibit lower accuracy and limited applicability. In this study, an improved hybrid prediction model based on the Butterfly Optimization Algorithm (BOA) and the Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the BOA is introduced to optimize the hyperparameters of the LSSVM. Then principal component analysis (PCA) is applied to data preprocessing, and the correlations of principal components are used to analyze and select model variables. To compare the forecasting accuracy and generalization ability based on the dataset of copper prices, some models are applied to establish multiple copper-price forecast cases, short-term, medium-term, and long-term. The results indicate that the PCA-BOA-LSSVM model demonstrates the most significant improvement, particularly in long-term forecasting cases. The highest optimization rate for RMSE reach 55.61%. The evaluation metrics of RMSE and MAPE for each case do not exceed 0.5 and 0.1, respectively, while R2 remains above 0.6. In conclusion, this study provides a high-precision model for short-term, medium-term, and long-term forecasts of copper prices and provides reliable theoretical support for government policy adjustment and market investment.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing