用于充分降维的交替方向乘法

IF 1.3 4区 数学 Q1 MATHEMATICS Journal of Mathematics Pub Date : 2024-05-13 DOI:10.1155/2024/3692883
Sheng Ma, Qin Jiang, Zaiqiang Ku
{"title":"用于充分降维的交替方向乘法","authors":"Sheng Ma, Qin Jiang, Zaiqiang Ku","doi":"10.1155/2024/3692883","DOIUrl":null,"url":null,"abstract":"The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"28 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Alternating Direction Method of Multipliers for Sufficient Dimension Reduction\",\"authors\":\"Sheng Ma, Qin Jiang, Zaiqiang Ku\",\"doi\":\"10.1155/2024/3692883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3692883\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3692883","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最小平均方差估计法(MAVE)已被证明是充分降维的有效方法。在本研究中,我们将计算高效的优化算法交替乘法(ADMM)应用于充分降维(SDR)问题的特定方法(MAVE 或最小平均方差估计)。在一些假设条件下,我们证明了 ADMM 生成的迭代序列会收敛到相关的增强拉格朗日函数的某个点。而且,该点是静止的。报告还介绍了一些对合成数据的数值模拟,以证明该算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Alternating Direction Method of Multipliers for Sufficient Dimension Reduction
The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
期刊最新文献
An Unconditionally Stable Numerical Method for Space Tempered Fractional Convection-Diffusion Models On the Exterior Degree of a Finite-Dimensional Lie Algebra Study of Hybrid Problems under Exponential Type Fractional-Order Derivatives Hankel Determinants for the Logarithmic Coefficients of a Subclass of Close-to-Star Functions Characterizing Topologically Dense Injective Acts and Their Monoid Connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1