{"title":"铝合金桁架连接件火灾后挠曲行为的实验和数值分析","authors":"Shaozhen Chen, Xiaonong Guo, Jinhui Luo, Zeyu Xu, Chen Chen","doi":"10.1177/13694332241254593","DOIUrl":null,"url":null,"abstract":"Regarding the damage incurred by aluminum alloy latticed shells under fire loads, a crucial aspect in assessing structural integrity is examining the residual bearing capacity of aluminum alloy gusset (AAG) joints. Consequently, this paper conducted experimental and numerical analyses on the post-fire flexural behavior of AAG joints. Initially, twelve AAG joints underwent post-fire tests, revealing that the failure patterns differed between thin-plate joints (exhibiting block tearing of gusset plates) and thick-plate joints (exhibiting member buckling). Notably, the initial stiffness approximately remained constant, while a trilinear relationship emerged between the ultimate flexural bearing capacity and the maximum post-fire temperature. Subsequently, finite element (FE) analysis was carried out, and the accuracy of FE models was verified by comparing the FE results with the test results. A comprehensive parametric analysis, considering various plate thicknesses, post-fire temperatures, and aluminum alloy brands, was then conducted. Ultimately, employing statistical regression, theoretical equations were formulated to estimate both bending stiffness and bearing capacity for AAG joints after exposure to fire.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical analysis on the post-fire flexural behavior of aluminum alloy gusset joints\",\"authors\":\"Shaozhen Chen, Xiaonong Guo, Jinhui Luo, Zeyu Xu, Chen Chen\",\"doi\":\"10.1177/13694332241254593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regarding the damage incurred by aluminum alloy latticed shells under fire loads, a crucial aspect in assessing structural integrity is examining the residual bearing capacity of aluminum alloy gusset (AAG) joints. Consequently, this paper conducted experimental and numerical analyses on the post-fire flexural behavior of AAG joints. Initially, twelve AAG joints underwent post-fire tests, revealing that the failure patterns differed between thin-plate joints (exhibiting block tearing of gusset plates) and thick-plate joints (exhibiting member buckling). Notably, the initial stiffness approximately remained constant, while a trilinear relationship emerged between the ultimate flexural bearing capacity and the maximum post-fire temperature. Subsequently, finite element (FE) analysis was carried out, and the accuracy of FE models was verified by comparing the FE results with the test results. A comprehensive parametric analysis, considering various plate thicknesses, post-fire temperatures, and aluminum alloy brands, was then conducted. Ultimately, employing statistical regression, theoretical equations were formulated to estimate both bending stiffness and bearing capacity for AAG joints after exposure to fire.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241254593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241254593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
关于铝合金格构壳体在火灾荷载下产生的损坏,评估结构完整性的一个重要方面是检查铝合金桁架(AAG)连接处的剩余承载能力。因此,本文对 AAG 接头的火灾后挠曲行为进行了实验和数值分析。最初,对 12 个 AAG 接头进行了火灾后测试,结果显示薄板接头(表现为桁架板块撕裂)和厚板接头(表现为构件屈曲)的失效模式各不相同。值得注意的是,初始刚度大致保持不变,而极限抗弯承载力与火灾后最高温度之间出现了三线性关系。随后,进行了有限元(FE)分析,并通过比较 FE 结果和测试结果验证了 FE 模型的准确性。然后,考虑到各种板厚、着火后温度和铝合金品牌,进行了全面的参数分析。最后,通过统计回归,制定了理论方程来估算 AAG 接头在火灾后的弯曲刚度和承载能力。
Experimental and numerical analysis on the post-fire flexural behavior of aluminum alloy gusset joints
Regarding the damage incurred by aluminum alloy latticed shells under fire loads, a crucial aspect in assessing structural integrity is examining the residual bearing capacity of aluminum alloy gusset (AAG) joints. Consequently, this paper conducted experimental and numerical analyses on the post-fire flexural behavior of AAG joints. Initially, twelve AAG joints underwent post-fire tests, revealing that the failure patterns differed between thin-plate joints (exhibiting block tearing of gusset plates) and thick-plate joints (exhibiting member buckling). Notably, the initial stiffness approximately remained constant, while a trilinear relationship emerged between the ultimate flexural bearing capacity and the maximum post-fire temperature. Subsequently, finite element (FE) analysis was carried out, and the accuracy of FE models was verified by comparing the FE results with the test results. A comprehensive parametric analysis, considering various plate thicknesses, post-fire temperatures, and aluminum alloy brands, was then conducted. Ultimately, employing statistical regression, theoretical equations were formulated to estimate both bending stiffness and bearing capacity for AAG joints after exposure to fire.