利用 SynSemGCN 为联合中文分词和语音部分标记纳入知识

IF 2.4 3区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Aslib Journal of Information Management Pub Date : 2024-05-14 DOI:10.1108/ajim-07-2023-0263
Xuemei Tang, Jun Wang, Qi Su
{"title":"利用 SynSemGCN 为联合中文分词和语音部分标记纳入知识","authors":"Xuemei Tang, Jun Wang, Qi Su","doi":"10.1108/ajim-07-2023-0263","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Recent trends have shown the integration of Chinese word segmentation (CWS) and part-of-speech (POS) tagging to enhance syntactic and semantic parsing. However, the potential utility of hierarchical and structural information in these tasks remains underexplored. This study aims to leverage multiple external knowledge sources (e.g. syntactic and semantic features, lexicons) through various modules for the joint task.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>We introduce a novel learning framework for the joint CWS and POS tagging task, utilizing graph convolutional networks (GCNs) to encode syntactic structure and semantic features. The framework also incorporates a pre-defined lexicon through a lexicon attention module. We evaluate our model on a range of public corpora, including CTB5, PKU and UD, the novel ZX dataset and the comprehensive CTB9 dataset.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Experimental results on these benchmark corpora demonstrate the effectiveness of our model in improving the performance of the joint task. Notably, we find that syntax information significantly enhances performance, while lexicon information helps mitigate the issue of out-of-vocabulary (OOV) words.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study introduces a comprehensive approach to the joint CWS and POS tagging task by combining multiple features. Moreover, the proposed framework offers potential adaptability to other sequence labeling tasks, such as named entity recognition (NER).</p><!--/ Abstract__block -->","PeriodicalId":53152,"journal":{"name":"Aslib Journal of Information Management","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating knowledge for joint Chinese word segmentation and part-of-speech tagging with SynSemGCN\",\"authors\":\"Xuemei Tang, Jun Wang, Qi Su\",\"doi\":\"10.1108/ajim-07-2023-0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Recent trends have shown the integration of Chinese word segmentation (CWS) and part-of-speech (POS) tagging to enhance syntactic and semantic parsing. However, the potential utility of hierarchical and structural information in these tasks remains underexplored. This study aims to leverage multiple external knowledge sources (e.g. syntactic and semantic features, lexicons) through various modules for the joint task.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>We introduce a novel learning framework for the joint CWS and POS tagging task, utilizing graph convolutional networks (GCNs) to encode syntactic structure and semantic features. The framework also incorporates a pre-defined lexicon through a lexicon attention module. We evaluate our model on a range of public corpora, including CTB5, PKU and UD, the novel ZX dataset and the comprehensive CTB9 dataset.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Experimental results on these benchmark corpora demonstrate the effectiveness of our model in improving the performance of the joint task. Notably, we find that syntax information significantly enhances performance, while lexicon information helps mitigate the issue of out-of-vocabulary (OOV) words.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study introduces a comprehensive approach to the joint CWS and POS tagging task by combining multiple features. Moreover, the proposed framework offers potential adaptability to other sequence labeling tasks, such as named entity recognition (NER).</p><!--/ Abstract__block -->\",\"PeriodicalId\":53152,\"journal\":{\"name\":\"Aslib Journal of Information Management\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aslib Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ajim-07-2023-0263\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aslib Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ajim-07-2023-0263","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的最近的趋势表明,中文分词(CWS)和语音部分标记(POS)的整合可以增强句法和语义解析。然而,层次和结构信息在这些任务中的潜在效用仍未得到充分开发。本研究旨在通过各种模块利用多种外部知识源(如句法和语义特征、词典)来完成联合任务。设计/方法/途径我们为 CWS 和 POS 标记联合任务引入了一个新颖的学习框架,利用图卷积网络(GCN)来编码句法结构和语义特征。该框架还通过词典关注模块纳入了预定义的词典。我们在一系列公共语料库(包括 CTB5、PKU 和 UD)、新颖的 ZX 数据集和全面的 CTB9 数据集上评估了我们的模型。值得注意的是,我们发现语法信息能显著提高性能,而词库信息则有助于缓解词汇外(OOV)词的问题。 原创性/价值本研究通过结合多种特征,为联合 CWS 和 POS 标记任务引入了一种综合方法。此外,所提出的框架还可用于其他序列标记任务,如命名实体识别 (NER)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating knowledge for joint Chinese word segmentation and part-of-speech tagging with SynSemGCN

Purpose

Recent trends have shown the integration of Chinese word segmentation (CWS) and part-of-speech (POS) tagging to enhance syntactic and semantic parsing. However, the potential utility of hierarchical and structural information in these tasks remains underexplored. This study aims to leverage multiple external knowledge sources (e.g. syntactic and semantic features, lexicons) through various modules for the joint task.

Design/methodology/approach

We introduce a novel learning framework for the joint CWS and POS tagging task, utilizing graph convolutional networks (GCNs) to encode syntactic structure and semantic features. The framework also incorporates a pre-defined lexicon through a lexicon attention module. We evaluate our model on a range of public corpora, including CTB5, PKU and UD, the novel ZX dataset and the comprehensive CTB9 dataset.

Findings

Experimental results on these benchmark corpora demonstrate the effectiveness of our model in improving the performance of the joint task. Notably, we find that syntax information significantly enhances performance, while lexicon information helps mitigate the issue of out-of-vocabulary (OOV) words.

Originality/value

This study introduces a comprehensive approach to the joint CWS and POS tagging task by combining multiple features. Moreover, the proposed framework offers potential adaptability to other sequence labeling tasks, such as named entity recognition (NER).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aslib Journal of Information Management
Aslib Journal of Information Management COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.30
自引率
19.20%
发文量
79
期刊介绍: Aslib Journal of Information Management covers a broad range of issues in the field, including economic, behavioural, social, ethical, technological, international, business-related, political and management-orientated factors. Contributors are encouraged to spell out the practical implications of their work. Aslib Journal of Information Management Areas of interest include topics such as social media, data protection, search engines, information retrieval, digital libraries, information behaviour, intellectual property and copyright, information industry, digital repositories and information policy and governance.
期刊最新文献
Exploring the impact of team engagement on patient satisfaction: insights from social support and transactive memory system Factors affecting user intention to use social commerce continuously from a habit perspective What decision-making process do mHealth users go through when faced with privacy disclosure behaviors? A dual trade-off perspective Collaborative online shopping: customer satisfaction and the influence of product type, gender and involvement An associative text analyzer to facilitate effectiveness of exploring historical texts for digital humanities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1