薄壁圆钢管承受偏心荷载时的轴承阻力研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-09 DOI:10.1177/13694332241253395
Zhenyun Tang, Jiayu Li, Mingqiao Wang, Xin Wang, Chunyi Yu, Zhenbao Li
{"title":"薄壁圆钢管承受偏心荷载时的轴承阻力研究","authors":"Zhenyun Tang, Jiayu Li, Mingqiao Wang, Xin Wang, Chunyi Yu, Zhenbao Li","doi":"10.1177/13694332241253395","DOIUrl":null,"url":null,"abstract":"In the engineering structures using circular steel tube (CST), the eccentric loading of CST members often occurs due to installation error and structural form. Existing research mainly focuses on the bearing resistance of circular steel pipes under the condition of eccentricity at one end. In practical application, both ends of CST members also may be eccentric. And with the increase in eccentricity, material yielding may occur prior to flexural buckling. So far, it’s lack of reports about the mechanical behavior of CST members subjected to eccentric loading at both ends and the boundary between material yielding and flexural buckling. This paper presents experimental, numerical and theoretical studies on bearing resistance of thin-walled circular steel tube with slenderness ratio of 30, 40 and 50, subjected to eccentric loading at one end and both ends, respectively. The study reveals a significant discrepancy in the prediction of bearing resistance for circular tubes subjected to eccentric loading at both ends according to existing design codes. Considering the synthesis of bending moment and deflection caused by eccentric loading at both ends, the calculation method of the bearing resistance based on flexural buckling of CST is established, which enhances the prediction accuracy of test verification. In addition, a theoretical boundary between the two failure modes appearing in CST members under eccentric loading at one and both end(s) - flexural buckling and reaching the material yielding strength - was established as dominated by the slenderness ratio and loading eccentricity.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on bearing resistance of thin-walled circular steel tube subjected to eccentric loading\",\"authors\":\"Zhenyun Tang, Jiayu Li, Mingqiao Wang, Xin Wang, Chunyi Yu, Zhenbao Li\",\"doi\":\"10.1177/13694332241253395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the engineering structures using circular steel tube (CST), the eccentric loading of CST members often occurs due to installation error and structural form. Existing research mainly focuses on the bearing resistance of circular steel pipes under the condition of eccentricity at one end. In practical application, both ends of CST members also may be eccentric. And with the increase in eccentricity, material yielding may occur prior to flexural buckling. So far, it’s lack of reports about the mechanical behavior of CST members subjected to eccentric loading at both ends and the boundary between material yielding and flexural buckling. This paper presents experimental, numerical and theoretical studies on bearing resistance of thin-walled circular steel tube with slenderness ratio of 30, 40 and 50, subjected to eccentric loading at one end and both ends, respectively. The study reveals a significant discrepancy in the prediction of bearing resistance for circular tubes subjected to eccentric loading at both ends according to existing design codes. Considering the synthesis of bending moment and deflection caused by eccentric loading at both ends, the calculation method of the bearing resistance based on flexural buckling of CST is established, which enhances the prediction accuracy of test verification. In addition, a theoretical boundary between the two failure modes appearing in CST members under eccentric loading at one and both end(s) - flexural buckling and reaching the material yielding strength - was established as dominated by the slenderness ratio and loading eccentricity.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241253395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241253395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在使用圆钢管(CST)的工程结构中,由于安装误差和结构形式的原因,圆钢管构件经常会出现偏心荷载。现有研究主要集中在圆钢管一端偏心情况下的承载阻力。在实际应用中,CST 构件的两端也可能出现偏心。而随着偏心率的增加,材料可能会在挠曲屈曲之前发生屈服。迄今为止,关于两端都承受偏心荷载的 CST 构件的力学行为以及材料屈服和挠曲屈曲之间的界限还缺乏相关报道。本文对一端和两端分别承受偏心荷载的细长比为 30、40 和 50 的薄壁圆形钢管的承载阻力进行了实验、数值和理论研究。研究结果表明,根据现有设计规范,两端承受偏心荷载的圆形钢管的承载阻力预测存在明显差异。考虑到两端偏心加载引起的弯矩和挠度的合成,建立了基于 CST 挠曲屈曲的承载阻力计算方法,提高了试验验证的预测精度。此外,还确定了 CST 构件在一端和两端偏心加载情况下出现的两种破坏模式--挠曲屈曲和达到材料屈服强度--之间的理论边界,这种边界受细长比和加载偏心率的支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on bearing resistance of thin-walled circular steel tube subjected to eccentric loading
In the engineering structures using circular steel tube (CST), the eccentric loading of CST members often occurs due to installation error and structural form. Existing research mainly focuses on the bearing resistance of circular steel pipes under the condition of eccentricity at one end. In practical application, both ends of CST members also may be eccentric. And with the increase in eccentricity, material yielding may occur prior to flexural buckling. So far, it’s lack of reports about the mechanical behavior of CST members subjected to eccentric loading at both ends and the boundary between material yielding and flexural buckling. This paper presents experimental, numerical and theoretical studies on bearing resistance of thin-walled circular steel tube with slenderness ratio of 30, 40 and 50, subjected to eccentric loading at one end and both ends, respectively. The study reveals a significant discrepancy in the prediction of bearing resistance for circular tubes subjected to eccentric loading at both ends according to existing design codes. Considering the synthesis of bending moment and deflection caused by eccentric loading at both ends, the calculation method of the bearing resistance based on flexural buckling of CST is established, which enhances the prediction accuracy of test verification. In addition, a theoretical boundary between the two failure modes appearing in CST members under eccentric loading at one and both end(s) - flexural buckling and reaching the material yielding strength - was established as dominated by the slenderness ratio and loading eccentricity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1