{"title":"利用响应面方法优化线材涂覆工艺中随时间变化的西斯科流","authors":"Soniya Hegde, N Srikantha, Ahmed Kadhim Hussein","doi":"10.1007/s12043-024-02761-y","DOIUrl":null,"url":null,"abstract":"<div><p>The proper utilisation of the coating fluid is crucial for ensuring the effectiveness of the wire coating process. Its complexity and importance make it the central focus of the present study. Also, understanding wire coating processes is important for ensuring product performance, cost efficiency, regulatory compliance, customer satisfaction, innovation and environmental sustainability. By optimising the coating processes, manufacturers can produce high-quality wire products that meet market demands while minimising negative impacts on the environment and resources. The objective is to assess the quality and performance of the wire coating process by examining the fluid flow characteristics within the die. Therefore, a mathematical model is devised to study the rheological properties of Sisko fluid with a constant pressure gradient in an unsteady state. The governing equation with oscillating boundary constraints is converted into dimensionless form and solved numerically using the method of lines (MoL) technique. The findings are presented through 2D and 3D plots. Response surface methodology (RSM) is implemented to investigate the statistical significance and sensitivity of the parameters and to optimise the shear stress rate.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of time-dependent Sisko flow in a wire coating process using response surface methodology\",\"authors\":\"Soniya Hegde, N Srikantha, Ahmed Kadhim Hussein\",\"doi\":\"10.1007/s12043-024-02761-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proper utilisation of the coating fluid is crucial for ensuring the effectiveness of the wire coating process. Its complexity and importance make it the central focus of the present study. Also, understanding wire coating processes is important for ensuring product performance, cost efficiency, regulatory compliance, customer satisfaction, innovation and environmental sustainability. By optimising the coating processes, manufacturers can produce high-quality wire products that meet market demands while minimising negative impacts on the environment and resources. The objective is to assess the quality and performance of the wire coating process by examining the fluid flow characteristics within the die. Therefore, a mathematical model is devised to study the rheological properties of Sisko fluid with a constant pressure gradient in an unsteady state. The governing equation with oscillating boundary constraints is converted into dimensionless form and solved numerically using the method of lines (MoL) technique. The findings are presented through 2D and 3D plots. Response surface methodology (RSM) is implemented to investigate the statistical significance and sensitivity of the parameters and to optimise the shear stress rate.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02761-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02761-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimisation of time-dependent Sisko flow in a wire coating process using response surface methodology
The proper utilisation of the coating fluid is crucial for ensuring the effectiveness of the wire coating process. Its complexity and importance make it the central focus of the present study. Also, understanding wire coating processes is important for ensuring product performance, cost efficiency, regulatory compliance, customer satisfaction, innovation and environmental sustainability. By optimising the coating processes, manufacturers can produce high-quality wire products that meet market demands while minimising negative impacts on the environment and resources. The objective is to assess the quality and performance of the wire coating process by examining the fluid flow characteristics within the die. Therefore, a mathematical model is devised to study the rheological properties of Sisko fluid with a constant pressure gradient in an unsteady state. The governing equation with oscillating boundary constraints is converted into dimensionless form and solved numerically using the method of lines (MoL) technique. The findings are presented through 2D and 3D plots. Response surface methodology (RSM) is implemented to investigate the statistical significance and sensitivity of the parameters and to optimise the shear stress rate.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.