{"title":"可数等价关系的共谱半径","authors":"MIKLÓS ABERT, MIKOLAJ FRACZYK, BENJAMIN HAYES","doi":"10.1017/etds.2024.32","DOIUrl":null,"url":null,"abstract":"We define the co-spectral radius of inclusions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline1.png\"/> <jats:tex-math> ${\\mathcal S}\\leq {\\mathcal R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline2.png\"/> <jats:tex-math> $G/H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for inclusion <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline3.png\"/> <jats:tex-math> $H\\leq G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"131 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-spectral radius for countable equivalence relations\",\"authors\":\"MIKLÓS ABERT, MIKOLAJ FRACZYK, BENJAMIN HAYES\",\"doi\":\"10.1017/etds.2024.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the co-spectral radius of inclusions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000324_inline1.png\\\"/> <jats:tex-math> ${\\\\mathcal S}\\\\leq {\\\\mathcal R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000324_inline2.png\\\"/> <jats:tex-math> $G/H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for inclusion <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000324_inline3.png\\\"/> <jats:tex-math> $H\\\\leq G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.32\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.32","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Co-spectral radius for countable equivalence relations
We define the co-spectral radius of inclusions ${\mathcal S}\leq {\mathcal R}$ of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on $G/H$ for inclusion $H\leq G$ of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.