H. F. Fang, S. P. Zhang, Q. B. Wu, J. M. Zeng, J. Zhang
{"title":"玻璃纤维增强聚乙烯复合管道内部承压性能研究","authors":"H. F. Fang, S. P. Zhang, Q. B. Wu, J. M. Zeng, J. Zhang","doi":"10.1007/s11029-024-10198-y","DOIUrl":null,"url":null,"abstract":"<p>To address the issues of the poor corrosion resistance and the low safety of the metal pipes used for oil and gas transportation, a glass-fiber-reinforced polyethylene thermoplastic composite pipe was developed. The finite-element analysis was employed to investigate the internal pressure resistance of each layer of the pipe. The impact of the winding angle, layer number, and diameter-to-thickness ratio were investigated. The optimum performance of the pipe was achieved when the ± 45° winding angle was set, but the layer number and diameter-to-thickness ratio met the relevant standards. To calculate the maximum bearing pressure of the pipe, two methods were compared: using the Tsai–Hill failure criterion and theoretical calculation of bursting pressure. The analysis revealed that the Tsai–Hill failure criterion better reflected the pipe failure situation.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"104 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Internal Pressure Bearing Performance of Glass-Fiber-Reinforced Polyethylene Composite Pipes\",\"authors\":\"H. F. Fang, S. P. Zhang, Q. B. Wu, J. M. Zeng, J. Zhang\",\"doi\":\"10.1007/s11029-024-10198-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the issues of the poor corrosion resistance and the low safety of the metal pipes used for oil and gas transportation, a glass-fiber-reinforced polyethylene thermoplastic composite pipe was developed. The finite-element analysis was employed to investigate the internal pressure resistance of each layer of the pipe. The impact of the winding angle, layer number, and diameter-to-thickness ratio were investigated. The optimum performance of the pipe was achieved when the ± 45° winding angle was set, but the layer number and diameter-to-thickness ratio met the relevant standards. To calculate the maximum bearing pressure of the pipe, two methods were compared: using the Tsai–Hill failure criterion and theoretical calculation of bursting pressure. The analysis revealed that the Tsai–Hill failure criterion better reflected the pipe failure situation.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10198-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10198-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A Study on the Internal Pressure Bearing Performance of Glass-Fiber-Reinforced Polyethylene Composite Pipes
To address the issues of the poor corrosion resistance and the low safety of the metal pipes used for oil and gas transportation, a glass-fiber-reinforced polyethylene thermoplastic composite pipe was developed. The finite-element analysis was employed to investigate the internal pressure resistance of each layer of the pipe. The impact of the winding angle, layer number, and diameter-to-thickness ratio were investigated. The optimum performance of the pipe was achieved when the ± 45° winding angle was set, but the layer number and diameter-to-thickness ratio met the relevant standards. To calculate the maximum bearing pressure of the pipe, two methods were compared: using the Tsai–Hill failure criterion and theoretical calculation of bursting pressure. The analysis revealed that the Tsai–Hill failure criterion better reflected the pipe failure situation.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.